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Abstract

Minimal bases of rational vector spaces are a well known and important tool in systems theory. If
minimal bases for two subspaces of rational n-space are displayed as the rows of polynomial matrices
Z1(λ)k×n and Z2(λ)m×n, respectively, then Z1 and Z2 are said to be dual minimal bases if the subspaces
have complementary dimension, i.e., k+m = n, and Z1(λ)Z

T
2 (λ) = 0. In other words, each Zj(λ) provides

a minimal basis for the nullspace of the other. It has long been known that for any dual minimal bases
Z1(λ) and Z2(λ), the row degree sums of Z1 and Z2 are the same. In this paper we show that this is the
only constraint on the row degrees, thus characterizing the possible row degrees of dual minimal bases.
The proof is constructive, making extensive use of a new class of sparse, structured polynomial matrices
that we have baptized zigzag matrices. Another application of these polynomial zigzag matrices is the
constructive solution of the following inverse problem for minimal indices – given a list of left and right
minimal indices and a desired degree d, does there exist a completely singular matrix polynomial (i.e., a
matrix polynomial with no elementary divisors whatsoever) of degree d having exactly the prescribed
minimal indices? We show that such a matrix polynomial exists if and only if d divides the sum of the
minimal indices. The constructed realization is simple, and explicitly displays the desired minimal indices
in a fashion analogous to the classical Kronecker canonical form of singular pencils.
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1 Introduction

The notion of a minimal basis, formed by vectors with polynomial entries, of a rational vector subspace was
made popular by the books of Wolovich [19] and Kailath [11], and by the paper of Forney [7], although all
three of them cite earlier work for the basic ideas of these so-called minimal polynomial bases. The main
contribution of these authors is twofold: they provided computational schemes for constructing a minimal
basis from an arbitrary polynomial basis, and they showed the importance of this notion for multivariable
linear systems. These systems could be modeled by rational matrices, polynomial matrices, or linearized
state-space models, and had tremendous potential for solving analysis and design problems in control theory
as well as in coding theory.

One such classical design problem was to show the relations between left and right coprime factorizations
of a rational matrix R(λ) of size m× k:

D`(λ)−1N`(λ) = R(λ) = Nr(λ)Dr(λ)−1,
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where D`(λ), N`(λ), Nr(λ), Dr(λ) are all polynomial matrices, and D`(λ), Dr(λ) are square and invertible.
The coprimeness condition amounts to saying that the m× (m+ k) and k × (m+ k) matrices

Z`(λ) := [D`(λ) , −N`(λ)] , and Zr(λ) := [Nr(λ)T , Dr(λ)T ]

have full row rank for all λ ∈ C. It is easy to see that

D`(λ)−1N`(λ) = Nr(λ)Dr(λ)−1 if and only if Z`(λ)Zr(λ)T = 0 ,

which implies that the row spaces of Z`(λ) and Zr(λ) over the field of rational functions are “dual” to each
other in the sense of Forney [7, Section 6]. In order to better understand the structure of these rational
row spaces, one could then look for polynomial bases that are “minimal” in the sense that the sum of the
degrees of the vectors in the basis is minimal. In the literature mentioned in the preceding paragraph, it has
been shown that this minimality condition makes the ordered list of degrees of the polynomial vectors in
any of these minimal bases unique, although there exist infinitely many minimal bases for any given rational
subspace. This is the reason why the degrees of the vectors in any minimal basis of a rational subspace
are currently known as the “minimal indices” of that subspace; in [7], however, they are called “invariant
dynamical indices”. In this paper, following the classical reference [7], we often arrange the vectors of a
minimal basis as the rows of a full row rank polynomial matrix, and refer to the matrix itself simply as a
“minimal basis”, for brevity. Since we are interested in dual rational subspaces, we also use the term “dual
minimal bases” to denote any minimal bases of dual rational subspaces, although this terminology is not
standard in the literature.

In the work by Forney [7, p.503, Corollary to Thm. 3], it was shown that dual rational subspaces have
minimal indices that add up to the same sum. In other words, if Z`(λ) and Zr(λ) are m × (m + k) and
k × (m+ k) minimal bases such that

Z`(λ)Zr(λ)T = 0,

then their respective row degrees ηi, for i = 1, . . . ,m, and εj , for j = 1, . . . , k, satisfy

m∑
i=1

ηi =

k∑
j=1

εj . (1.1)

A proof of this result can be found in [7, Section 6]; see also [5, Lemma 3.6] for another proof based on
techniques developed in [11, Chapter 6]. In this paper we study the associated inverse problem: given two
lists of nonnegative integers (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk) that have the same sum (1.1), do there exist
dual rational subspaces generated by some minimal (polynomial) bases having these numbers as their row
degrees? More specifically, we consider the constructive version of this question: can we explicitly construct
dual minimal bases having any lists of prescribed row degrees satisfying (1.1)?

In order to answer this question, we introduce in Section 3 some minimal bases of a very special sparse
form. When arranged as the rows of a matrix, we call these special minimal bases zigzag polynomial matrices
because of their echelon-like form with alternating right and left turns, like a cab driving through Manhattan.
This form will be crucial in showing that given any zigzag matrix Z1, it is very easy to construct another
zigzag matrix Z2 such that Z1 and Z2 are dual minimal bases; this is proven in Section 4. In Section 5
we then solve, in a simple and explicit constructive way, the inverse row degree problem for dual zigzag
matrices (Theorem 5.1); this result says that one can always construct a pair of dual zigzag minimal bases

with any two prescribed lists of positive row degrees that satisfy (1.1) as long as
∑α
i=1 ηi 6=

∑β
j=1 εj whenever

(α, β) 6= (m, k). Based on this inverse result for zigzag matrices, the inverse problem for general dual minimal
bases is explicitly solved in Section 6, taking as necessary and sufficient condition only (1.1); more specifically,
see Theorems 6.1 and 6.3 for this solution, which are the most important results in this paper. Finally, in
Section 7, we show how zigzag matrices can be used to provide simple, explicit constructions of polynomial
matrices with any prescribed degree d, any prescribed lists of left and right minimal indices, and no elementary
divisors at all (neither finite nor infinite), subject to the single necessary and sufficient condition that d
divides the sum of all the prescribed minimal indices. The results in Section 7 complement results recently
presented in [5], where a much more general inverse problem for matrix polynomials has been solved, but via
a rather complicated construction which does not explicitly display the realized complete eigenstructure. We
begin with a preliminary Section 2, where we remind the reader of a number of basic results that are needed
throughout this work.

Before proceeding, we emphasize that this paper is a new contribution to the active research area of inverse
problems for polynomial matrices with fixed degree, a topic that has been considered in the literature since
the 1970’s, and has attracted considerable attention in recent years. See, for instance, [1, 9, 10, 12, 14, 15, 17]
and the references therein.
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2 Preliminaries

The results in this paper hold for an arbitrary field F. The algebraic closure of F is denoted by F. By F[λ] we
denote the ring of polynomials in the variable λ with coefficients in F, and F(λ) denotes the field of fractions
of F[λ], also known as the field of rational functions over F. Vectors with entries in F[λ] will be termed vector
polynomials, and the degree of a vector polynomial is the highest degree of all its entries. The set of m× n
polynomial matrices with entries in F[λ] is denoted by F[λ]m×n, and the set of m× n rational matrices is
denoted by F(λ)m×n. By In we denote the n× n identity matrix, and by 0m×n the m× n null matrix. We
use the terms “polynomial matrix” and “matrix polynomial” with exactly the same meaning.

For a polynomial matrix P (λ) =
∑d
i=0 Piλ

i, where Pi ∈ Fm×n and Pd 6= 0, we say that the degree of P (λ)
is d, denoted by deg(P ) = d. The rank of P (λ) is defined in [8]; it is just the rank of P (λ) considered as a
matrix over the field F(λ), and is denoted by rank(P ). Note also that rank(P ) is equal to the number of
invariant polynomials of P (λ), which are also defined in [8]. The finite eigenvalues of P (λ) are the roots of its
invariant polynomials, and associated to each such eigenvalue are elementary divisors of P (λ); see for instance
[8] or [3, Section 2] for more details on this and other standard concepts used in this section. Polynomial
matrices may also have infinity as an eigenvalue. Its definition is based on the so-called reversal polynomial
matrix. The reversal polynomial matrix revP (λ) of P (λ) is

revP (λ) := λdP

(
1

λ

)
= Pd + Pd−1 λ+ · · ·+ P0 λ

d . (2.1)

We emphasize that in this paper the reversal is always taken with respect to the degree of the original
polynomial. Note that other options are considered in [3, Definition 2.12]. We say that ∞ is an eigenvalue of
P (λ) if 0 is an eigenvalue of revP (λ), and the elementary divisors for the eigenvalue 0 of revP (λ) are the
elementary divisors for ∞ of P (λ). It is well known that P (λ) is a polynomial matrix having no eigenvalue at
∞ if and only if its highest degree coefficient matrix Pd has rank equal to rank(P ) [3, Remark 2.14].

This paper deals mainly with minimal bases and minimal indices of polynomial matrices. Therefore, we
introduce these concepts in some detail. An m× n polynomial matrix P (λ) whose rank r is smaller than m
and/or n has non-trivial left and/or right null-spaces, respectively, over the field F(λ):

N`(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
.

Polynomial matrices with non-trivial left and/or right null-spaces are called singular polynomial matrices.
It is well known that every rational vector subspace V , i.e., every subspace V ⊆ F(λ)n, has bases consisting

entirely of vector polynomials. Among them some are minimal in the following sense [7].

Definition 2.1. Let V be a subspace of F(λ)n. A minimal basis of V is a basis of V consisting of vector
polynomials whose sum of degrees is minimal among all bases of V consisting of vector polynomials.

It can be shown [7, 11, 13] that the ordered list of degrees of the vector polynomials in any minimal basis
of V is always the same. These degrees are then called the minimal indices of V. This leads to the definition
of the minimal indices of a polynomial matrix.

Definition 2.2. Let P (λ) be an m × n singular polynomial matrix with rank r over a field F, and let the
sets

{
y1(λ)T , . . . , ym−r(λ)T

}
and {x1(λ), . . . , xn−r(λ)} be minimal bases of N`(P ) and Nr(P ), respectively,

ordered so that 0 ≤ deg(y1) ≤ · · · ≤ deg(ym−r) and 0 ≤ deg(x1) ≤ · · · ≤ deg(xn−r). Let ηi = deg(yi)
for i = 1, . . . ,m − r and εj = deg(xj) for j = 1, . . . , n − r. Then the scalars η1 ≤ η2 ≤ · · · ≤ ηm−r and
ε1 ≤ ε2 ≤ · · · ≤ εn−r are, respectively, the left and right minimal indices of P (λ).

In order to give a practical characterization of minimal bases, we introduce Definition 2.3. In the following,
when referring to the column (resp., row) degrees d1, . . . , dn (resp., d′1, . . . , d

′
m) of an m×n polynomial matrix

P (λ), we mean that dj (resp., d′j) is the degree of the jth column (resp., row) of P (λ).

Definition 2.3. Let N(λ) be an m × n polynomial matrix with column degrees d1, . . . , dn. The highest-
column-degree coefficient matrix of N(λ), denoted by Nhc, is the m× n constant matrix whose jth column is
the vector coefficient of λdj in the jth column of N(λ). Then N(λ) is said to be column reduced if Nhc has
full column rank.

Similarly, let M(λ) be an m× n polynomial matrix with row degrees d′1, . . . , d
′
m. The highest-row-degree

coefficient matrix of M(λ), denoted by Mhr, is the m×n constant matrix whose jth row is the vector coefficient

of λd
′
j in the jth row of M(λ). Then M(λ) is said to be row reduced if Mhr has full row rank.
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Theorem 2.4 now provides a characterization of those polynomial matrices whose columns or rows are
minimal bases of the subspaces they span. Theorem 2.4 is a minor variation of [7, Main Theorem (2), p. 495]
or [11, Theorem 6.5-10]; this minor variation was previously stated in [5, Theorem 2.14].

Theorem 2.4. The columns (resp., rows) of a polynomial matrix N(λ) over a field F are a minimal basis of
the subspace they span if and only if N(λ0) has full column (resp., row) rank for all λ0 ∈ F, and N(λ) is
column (resp., row) reduced.

Remark 2.5. For the sake of brevity, we often refer to a p× q polynomial matrix N(λ) itself as a minimal
basis, if the columns (when q < p) or rows (when p < q) of N(λ) are a minimal basis of the subspace they
span. In addition, if N(λ) is a minimal basis of Nr(P ) (resp., N`(P )) for a given polynomial matrix P (λ),
then we refer to the matrix N(λ) itself as a right (resp., left) minimal basis of P (λ).

Theorem 2.4 allows us to easily prove two simple results that will be used in the next sections. They can
also be proved from the results in [13, Section 6] via a completely different approach.

Lemma 2.6. Let M(λ) be a full row rank m× n polynomial matrix, and let

M̃(λ) :=

[
Ip 0
0 M(λ)

]
and M̂(λ) :=

[
M(λ) 0

0 Ip

]
.

Then M̃(λ) and M̂(λ) both have full row rank, and both have right minimal indices equal to the right minimal
indices of M(λ).

Proof. First, we prove the result for M̃(λ). It is trivial to see that M̃(λ) has full row rank, and that

dimNr(M̃) = dimNr(M) =: t. Let the n × t polynomial matrix N(λ) be a right minimal basis of M(λ).

Then Ñ(λ) :=

[
0p×t
N(λ)

]
is also a minimal basis by Theorem 2.4, and M̃(λ)Ñ(λ) = 0. Since dimNr(M̃) = t,

we conclude that Ñ(λ) is in fact a right minimal basis of M̃(λ), and the result for the right minimal indices
follows inmediately.

Since M̂(λ) is obtained from M̃(λ) via column and row permutations, and such permutations change

neither the rank nor the minimal indices, the result for M̂(λ) follows from the one for M̃(λ).

Remark 2.7. Since the left/right minimal indices of any polynomial matrix P (λ) are equal to the right/left
minimal indices of P (λ)T , it follows immediately that an analogous version of Lemma 2.6 for the left minimal
indices of full column rank polynomial matrices M(λ) also holds.

The next lemma considers elementary divisors and minimal indices of direct sums of matrix polynomials.

Lemma 2.8. Let P1(λ), . . . , Ps(λ) be polynomial matrices with arbitrary sizes but all with the same degree,
and let

P (λ) :=


0p0×q0

P1(λ)
. . .

Ps(λ)

 .
Then:

(a) The list of elementary divisors of P (λ) associated to its finite and infinite eigenvalues is the concatenation
of the lists of elementary divisors of Pi(λ) associated to its finite and infinite eigenvalues for i = 1, . . . , s.

(b) The list of right minimal indices of P (λ) is the concatenation of q0 right minimal indices equal to 0
together with the lists of right minimal indices of Pi(λ) for i = 1, . . . , s.

(c) The list of left minimal indices of P (λ) is the concatenation of p0 left minimal indices equal to 0 together
with the lists of left minimal indices of Pi(λ) for i = 1, . . . , s.

As usual, in the case p0 6= 0 and q0 = 0, 0p0×q0 means that the first p0 rows of P (λ) are zero and no additional
zero columns are placed in the first positions; in the case p0 = 0 and q0 6= 0, 0p0×q0 means that the first q0
columns of P (λ) are zero and no additional zero rows are placed in the first positions; in the case p0 = q0 = 0,
0p0×q0 is just the empty matrix and P1(λ) is the top diagonal block of P (λ).
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Proof. (a) The result for the elementary divisors associated to finite eigenvalues follows from [8, Theorem 5,
p. 142, Vol I], together with the fact that the zero polynomial matrix has no elementary divisors at all. For
the elementary divisors associated to the infinite eigenvalue, observe that

revP (λ) =


0p0×q0

revP1(λ)
. . .

revPs(λ)

 ,
since all the polynomials Pi(λ) have the same degree, and apply again [8, Theorem 5, p. 142, Vol I] to
revP (λ).
(b) Let Ni(λ) ∈ F[λ]qi×ni be a right minimal basis of Pi(λ) ∈ F[λ]pi×qi for i = 1, . . . , s, and consider the
direct sum N(λ) = Iq0 ⊕ N1(λ) ⊕ · · · ⊕ Ns(λ). If some Nr(Pj) = {0}, then we take Nj(λ) to be a qj × 0
matrix, so that its effect on the direct sum N(λ) is to add qj zero rows and no columns. Next, observe that:

(1) the number of columns of N(λ) is equal to dimNr(P ) = q0 + dimNr(P1) + · · ·+ dimNr(Ps),

(2) P (λ)N(λ) = 0, and

(3) N(λ0) has full column rank for all λ0 ∈ F and N(λ) is column reduced, since for i = 1, . . . , s the
matrices Ni(λ) satisfy these properties by Theorem 2.4, or are qi × 0 matrices.

Combining (1), (2), (3) and Theorem 2.4, we see that N(λ) is a right minimal basis of P (λ), and the result
for the right minimal indices follows.
(c) It follows from applying (b) to P (λ)T .

Remark 2.9. Although it does not have any impact on the results presented in this paper, it is worth
mentioning that the result stated in Lemma 2.8 for the elementary divisors associated to the infinite eigenvalue
is no longer true if the polynomials P1(λ), . . . , Ps(λ) have different degrees. Let us illustrate this fact with
a 2× 2 block polynomial matrix. Assume that P1(λ) and P2(λ) have degrees 3 and 2, respectively. Then
P (λ) = P1(λ)⊕ P2(λ) has degree 3 and revP (λ) = revP1(λ)⊕ λ revP2(λ), because the reversal of P2(λ) is
taken with respect to degP2(λ) = 2. Thus the elementary divisors of P (λ) at infinity are those of P1(λ) at
infinity concatenated with the elementary divisors at zero of λ revP2(λ). One option to avoid this complication
is to define all the reversals with respect to a previously given grade larger than or equal to the maximum
degree of all P1(λ), . . . , Ps(λ) in Lemma 2.8, although this strategy changes the degree of the elementary
divisors at infinity of each Pi(λ) with degree smaller than the grade by a uniform shift [3, 14].

The next concept introduced in this section is what we call dual minimal bases, and is one of the most
important notions in this work. As far as we know, this exact name has not been used before in the literature,
but it allows us to state and refer to certain fundamental results on rational vector subspaces included in
[7, 11] in a concise way.

Definition 2.10. Polynomial matrices M(λ) ∈ F[λ]m×n and N(λ) ∈ F[λ]k×n with full row ranks are said to
be dual minimal bases if they are minimal bases satisfying m+ k = n and M(λ)N(λ)T = 0.

In the language of [7, Section 6], dual minimal bases span rational vector subspaces of F(λ)n that are
dual to each other. In the language we are using in this paper, we have that M(λ) is a minimal basis of
N`(N(λ)T ) and that N(λ)T is a minimal basis of Nr(M(λ)). Therefore the right minimal indices of M(λ)
are the row degrees of N(λ) and the left minimal indices of N(λ)T are the row degrees of M(λ). Note that
we have defined dual minimal bases to have full row ranks because in the classical reference [7] minimal bases
are always arranged as the rows of a matrix. Obviously, one could also use full column rank matrices to
define dual minimal bases.

The discussion in the previous paragraph also allows us to establish the next fundamental (albeit easy to
prove) result in the context of this paper.

Proposition 2.11. For every minimal basis, there exists a minimal basis that is dual to it. In addition,
every minimal basis is the minimal basis of some matrix polynomial.

Proof. Let the rows of the polynomial matrix M(λ) ∈ F[λ]m×n with m < n be a minimal basis of the rational
subspace they span. The subspace Nr(M(λ)) over the field F(λ) exists and has minimal bases. Then, the
vectors of any of these minimal bases arranged as the rows of a matrix N(λ) form a dual minimal basis for
M(λ). The relation M(λ)N(λ)T = 0, together with the sizes of the matrices imposed by the duality, proves
that M(λ) is a left minimal basis of N(λ)T .
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The next theorem is a key result on dual minimal bases. It was proved in [7, p. 503] by using minors of
matrices. A different proof can be found in [5, Lemma 3.6], and a new proof is outlined in Remark 2.14.

Theorem 2.12. Let M(λ) ∈ F[λ]m×n and N(λ) ∈ F[λ]k×n be dual minimal bases with row degrees (η1, . . . , ηm)
and (ε1, . . . , εk), respectively. Then

m∑
i=1

ηi =

k∑
j=1

εj . (2.2)

As explained in the introduction, the main result in this paper is to solve the inverse problem posed by
Theorem 2.12, that is, to show that given any two lists of nonnegative integers (η1, . . . , ηm) and (ε1, . . . , εk)
satisfying (2.2), there exists a pair of dual minimal bases M(λ) ∈ F[λ]m×(m+k) and N(λ) ∈ F[λ]k×(m+k) with
precisely these row degrees, respectively. This is proved in Theorem 6.1 by using the properties of a new class
of polynomial matrices, the zigzag polynomial matrices introduced in Section 3, which allow us to present a
simple, explicit construction of these dual minimal bases.

We finish this section by recalling the Index Sum Theorem for polynomial matrices, and connecting this
result with Theorem 2.12. The Index Sum Theorem is an important result presented first for real polynomials
in [16], and extended to polynomials over any field in [3]. Recently, it has been shown in [5, Remark 3.2] that
the Index Sum Theorem is an easy corollary of a more general result valid for arbitrary rational matrices
proved in [18, Theorem 3], much earlier than in the previous references.

Theorem 2.13. (Index Sum Theorem). Let P (λ) be a polynomial matrix of degree d and rank r over an
arbitrary field F, having:

• elementary divisors associated to its finite eigenvalues with degrees α1, . . . , αs,

• elementary divisors associated to its infinite eigenvalue with degrees γ1, . . . , γt,

• p right minimal indices ε1, . . . , εp, and

• q left minimal indices η1, . . . , ηq.

Then
s∑
j=1

αj +

t∑
j=1

γj +

p∑
j=1

εj +

q∑
j=1

ηj = dr. (2.3)

Remark 2.14. The fundamental property of dual minimal bases expressed by Theorem 2.12 can be obtained
as a corollary of the Index Sum Theorem applied to a minimal basis. To see this, consider any minimal basis
M(λ) ∈ F[λ]r×n with full row rank r. Let wi(λ) be the rows of M(λ) with row degrees ηi = deg(wi) for
i = 1, . . . , r; without loss of generality we can assume that the rows are ordered so that η1 ≥ η2 ≥ · · · ≥ ηr,
hence d := degM(λ) = η1. Let ε1, . . . , εk with k + r = n be the right minimal indices of M(λ); recall from
the discussion following Definition 2.10 that ε1, . . . , εk are also the row degrees for any minimal basis that is
dual to M(λ). Clearly there are no left minimal indices for M(λ) because of its full row rank. Now to apply
the Index Sum Theorem to M(λ), we must also find the degrees of all the elementary divisors of M(λ). Since
M(λ) has full row rank for all λ0 ∈ F by Theorem 2.4, the Smith form of M(λ) must be

[
Ir 0r×k

]
, i.e.,

M(λ) has no finite eigenvalues at all. To find the elementary divisors at ∞, consider

revM(λ) =

 λd−η1 revw1(λ)
...

λd−ηr revwr(λ)

 = D(λ)R(λ) , (2.4)

where D(λ)r×r = diag[λd−η1 , . . . , λd−ηr ], and the jth row of R(λ)r×n is revwj(λ). Now whenever a
set

{
w1(λ), . . . , wr(λ)

}
forms a minimal basis, it is known (see [2, Thm 3.2] or [14, Thm 7.5]) that{

revw1(λ), . . . , revwr(λ)
}

is also a minimal basis. And since R(λ) is a minimal basis, it can be extended to

an n× n unimodular matrix R̃(λ) =

[
R(λ)r×n
W (λ)k×n

]
, see [7, Thm 4]. Letting S(λ) :=

[
D(λ) 0r×k

]
, we see

that

S(λ)R̃(λ) =
[
D(λ) 0

] [ R(λ)
W (λ)

]
= revM(λ) ,
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witnessing that S(λ) is the Smith form of revM(λ), and thus revealing the elementary divisors at ∞ for
M(λ). The Index Sum Theorem applied to M(λ) then says

r∑
i=1

(d− ηi) +

k∑
j=1

εj = dr ,

from which (2.2) now immediately follows.

3 Zigzag Matrices: Definitions and Examples

We begin by defining the special class of polynomial matrices under consideration in this paper.

Definition 3.1 (Forward-zigzag polynomial matrices). An m × n polynomial matrix Z(λ) with m < n is
said to be a forward-zigzag polynomial matrix, abbreviated to “forward-zigzag matrix”, if

(a) each row of Z(λ) is of the form[
0 . . . 0︸ ︷︷ ︸ 1 λp1 λp2 . . . λpk 0 . . . 0︸ ︷︷ ︸ ] ,

Maybe none Maybe none

(3.1)

with at least two nonzero entries in each row: a leading 1 and at least one nontrivial power of λ. The
nonzero entries in each row lie in consecutive adjacent columns, with the powers pi in strictly increasing
order going from left to right, i.e., 0 < p1 < p2 < · · · < pk, with k ≥ 1.

(b) Z(λ) is in a special double-echelon form:

For i = 2, . . . ,m, the last nonzero entry of the (i− 1)th row and the first nonzero entry of the
ith row are in the same column.

(c) Z(λ) has no zero columns.

Remark 3.2. It is worth mentioning some concepts in the literature that are reminiscent of certain aspects
of Definition 3.1. The notion of a matrix having a zig-zag shape in [6] is clearly related but not identical
to the zero structure patterns of zigzag matrices in Definition 3.1. Even more closely related (but still not
identical) is the zero structure of the staircase matrices in [4].

The reader should keep in mind from the outset the following fundamental property of forward-zigzag
matrices.

Theorem 3.3. The rows of any forward-zigzag matrix are a minimal basis of the rational subspace they span
or, equivalently, any forward-zigzag matrix is a minimal basis.

Proof. The double-echelon form of any forward-zigzag matrix Z(λ) implies:
(a) Z(λ0) has full row rank for all λ0 ∈ F because of the position of the leading 1 in each row of Z(λ), and
(b) Z(λ) is row reduced because each row of Z(λ) has a unique highest degree entry (the trailing one), and
these highest degree entries are in distinct columns. Therefore, Theorem 2.4 guarantees that Z(λ) is a
minimal basis.

In addition to being minimal bases, forward-zigzag matrices have a rich structure that is most easily
described in terms of the definitions presented below. In particular, any column of a forward-zigzag matrix is
of one of the following two types.

Definition 3.4 (Unit and non-unit columns). Any column of an m× n forward-zigzag matrix that contains
the entry “ 1” is called a unit column of Z(λ). Any column containing no entry “ 1” is called a non-unit
column of Z(λ). Using “ U” to indicate a unit column and “ N” for a non-unit column, we specify the location
of the unit and non-unit columns of Z(λ) by an n-symbol string

S1 , S2 , . . . , Sn

of U’s and N’s, i.e., Si ∈ {U,N} for i = 1, . . . , n. This string is the unit column sequence of Z(λ).
(Observe that in a forward-zigzag matrix a unit column is the same as the usual notion of pivot column.)

The following remarks on forward-zigzag matrices will be used later.
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Remark 3.5. Note that the conditions in Definition 3.1 imply that the first column of a forward-zigzag
matrix will always be a unit column, and the last column will never be a unit column, i.e., S1 = U and
Sn = N.

Remark 3.6. The number of rows of a forward-zigzag matrix Z(λ) is the same as the number of unit
columns of Z(λ), i.e., the number of U’s in the unit column sequence of Z(λ).

Example 3.7. Here is a simple example of a forward-zigzag matrix:

Z(λ) =


1 λ2 λ7 λ8

1 λ3

1 λ λ4 λ8 λ15

1 λ2 λ3

 . (3.2)

The unit column sequence of Z(λ) in (3.2) is U,N,N,U,U,N,N,N,U,N,N.

Example 3.8. Note that the canonical singular blocks for right (column) minimal indices that appear in the
Kronecker canonical form for matrix pencils [8, Ch XII, Sec. 5], that is 1 λ

. . .
. . .

1 λ


ε×(ε+1)

,

constitute a familiar but very special type of forward-zigzag matrix, with only one non-unit entry in each row
and only one non-unit column (the last column).

Remark 3.9. Observe that any column of a forward-zigzag matrix contains either one or two nonzero entries;
one if it is a non-unit column or the first column, two if it is any unit column other than the first. There
are no other possibilities. Also note that if two adjacent columns are non-unit, then their corresponding
nonzero entries must lie in the same row, since when moving from left to right along nonzero entries in a
forward-zigzag matrix, one can only switch rows at a unit column.

The following notion encodes relevant information on forward-zigzag matrices.

Definition 3.10 (Degree-gap sequence of a forward-zigzag matrix). For any two adjacent columns Cj and
Cj+1 in a forward-zigzag matrix Z(λ), there is a unique row Ri having two nonzero entries in those columns.
The positive degree difference of these two entries, i.e., δj := degZi,j+1(λ)− degZi,j(λ) ≥ 1, will be called
the jth degree gap of Z(λ). Note that if Z(λ) is m× n, then Z(λ) has n− 1 degree gaps. The ordered list

δ1 , δ2 , . . . , δn−1

is the degree-gap sequence of Z(λ).

Example 3.11. The degree-gap sequence of Z(λ) in (3.2) is 2, 5, 1, 3, 1, 3, 4, 7, 2, 1 .

Definition 3.12 (Structure sequence of a forward-zigzag matrix). Let Z(λ) be an m × n forward-zigzag
matrix. Then the sequence of length 2n − 1 obtained by interleaving the unit column sequence and the
degree-gap sequence of Z(λ), i.e.,

S =
[

S1 δ1 S2 δ2 . . . Sn−1 δn−1 Sn

]
. (3.3)

is the structure sequence of Z(λ).

Example 3.13. The structure sequence of Z(λ) in (3.2) is[
U 2 N 5 N 1 U 3 U 1 N 3 N 4 N 7 U 2 N 1 N

]
. (3.4)

It is not hard to see that a forward-zigzag matrix is uniquely determined by its structure sequence, since
it allows us to construct the matrix in a unique way starting from the 1 in the (1, 1) entry. We will consider
this construction in more detail at the beginning of Section 4.1.

We now define another related type of zigzag matrix, using the reverse identity matrices Rk, defined by

Rk :=

[
1

. .
.

1

]
k×k

. (3.5)

Note that the effect of multiplying an m× n matrix A by Rm on the left (by Rn on the right) is simply to
reverse the order of the rows (columns) of A.
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Definition 3.14 (Backward-zigzag polynomial matrices). An m× n polynomial matrix Ẑ(λ) with m < n is

said to be a backward-zigzag polynomial matrix, abbreviated to just “backward-zigzag matrix”, if RmẐ(λ)Rn
is a forward-zigzag matrix.

Clearly this relation between forward and backward-zigzag matrices is symmetric, since for any m × n
forward-zigzag matrix Z(λ), the matrix RmZ(λ)Rn is backward-zigzag.

From Definition 3.14 it is now easy to see that the structure of backward-zigzag matrices is very similar, but
not identical, to that of forward-zigzag matrices. The main difference is that each row of a backward-zigzag
matrix Ẑ(λ) is of the form [

0 . . . 0︸ ︷︷ ︸ λq` . . . λq2 λq1 1 0 . . . 0︸ ︷︷ ︸ ]
Maybe none Maybe none

(3.6)

with at least two nonzero entries in each row, but now with a trailing unit entry 1 and at least one nontrivial
power of λ. The nonzero entries in each row again lie in consecutive adjacent columns, but with the powers qi
in strictly increasing order going from right to left rather than from left to right, i.e., q` > · · · > q2 > q1 > 0,
with ` ≥ 1. A backward-zigzag matrix Ẑ(λ) is still in double-echelon form, i.e., the last nonzero entry of the

(i−1)th row and the first nonzero entry of the ith row are in the same column, and Ẑ(λ) has no zero columns.
In addition, Definition 3.14 together with Remark 3.5 imply that the first column of a backward-zigzag matrix
is never a unit column, while the last column is always a unit column, where the definitions of unit and
non-unit columns, and unit column sequence are analogous to those for forward-zigzag matrices. Theorem
2.4 again guarantees that any backward-zigzag matrix is a minimal basis.

Example 3.15. Here is an example of a backward-zigzag matrix:

Ẑ(λ) =



λ2 1
λ5 1

λ5 λ4 λ 1
λ3 1

λ4 1
λ9 λ2 1

λ 1


. (3.7)

The unit column sequence of Ẑ(λ) in (3.7) is N,U,U,N,N,U,U,U,N,U,U.

Remark 3.16. Just as for forward-zigzag matrices, any column of a backward-zigzag matrix contains either
one or two nonzero entries; here, though, it is one if it is a non-unit column or the last column, two if it is
any unit column other than the last. There are no other possibilities. This can be immediately seen from
Remark 3.9 and Definition 3.14. It also follows from Remark 3.9 and Definition 3.14 that if two adjacent
columns of a backward-zigzag matrix are non-unit, then their corresponding nonzero entries must once again
lie in the same row.

Backward-zigzag matrices also have a natural degree-gap sequence, which can be defined by reducing to
the forward-zigzag case.

Definition 3.17 (Degree-gap sequence of backward-zigzag matrices). Suppose the m× n matrix Ẑ(λ) is a

backward-zigzag matrix, so that Z(λ) := RmẐ(λ)Rn is forward-zigzag. Then the degree-gap sequence of Ẑ(λ)
is the same as the reverse of the degree-gap sequence of Z(λ).

The degree-gap sequence of a backward-zigzag matrix could also be defined analogously to that for a
forward-zigzag matrix, just taking into account that the degrees are now increasing from right to left instead
of from left to right. The jth degree gap in a backward-zigzag matrix Ẑ(λ) is then the positive degree

difference δj := deg Ẑi,j(λ)− deg Ẑi,j+1(λ) ≥ 1, where i is the unique row of Ẑ(λ) containing two nonzero

entries in columns j and j + 1. The degree-gap sequence of Ẑ(λ) is again the list of degree gaps, scanning

through Ẑ(λ) from left to right.

Example 3.18. The degree-gap sequence of Ẑ(λ) in (3.7) is (2, 5, 1, 3, 1, 3, 4, 7, 2, 1).

Definition 3.19 (Structure sequence of a backward-zigzag matrix). Let Ẑ(λ) be an m× n backward-zigzag
matrix. Then the sequence of length 2n−1 obtained by interleaving the unit column sequence and the degree-gap
sequence of Ẑ(λ) is the structure sequence of Ẑ(λ). The structure sequences of Ẑ(λ) and Z(λ) = RmẐ(λ)Rn
are reverses of each other.
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Example 3.20. The structure sequence of Ẑ(λ) in (3.7) is[
N 2 U 5 U 1 N 3 N 1 U 3 U 4 U 7 N 2 U 1 U

]
. (3.8)

Just as for forward-zigzag matrices, a backward-zigzag matrix is uniquely determined by its structure
sequence, since it allows us to construct the matrix in a unique way starting from the 1 in the lower-right
corner.

Definition 3.21 (Dual zigzag matrices). Suppose Z(λ) is a forward-zigzag matrix and Ẑ(λ) is a backward-

zigzag matrix with the same number of columns. Then Z(λ) and Ẑ(λ) are said to be dual zigzag matrices, or
to form a dual zigzag pair, if they have

(a) the same degree-gap sequence, but

(b) complementary unit column sequences, where U and N are each other’s complement.

Example 3.22. The matrices Z(λ) in (3.2) and Ẑ(λ) in (3.7) form a dual zigzag pair.

The following result follows immediately from the complementarity property and Remark 3.6.

Corollary 3.23. If Z(λ) ∈ F[λ]m×n and Ẑ(λ) ∈ F[λ]k×n are dual zigzag matrices, then m+ k = n.

4 Properties of Zigzag Matrices

4.1 Basic Properties

It has been claimed that forward-zigzag and backward-zigzag matrices are uniquely determined by their
structure sequences. Let us consider this in a little more detail, and describe a recursive procedure to
reconstruct a zigzag matrix from its structure sequence.

We consider only the case of forward-zigzag matrices, constructing it from upper left to bottom right by
reading the structure sequence from left to right. The construction of backward-zigzag matrices proceeds
analogously, working instead from bottom right to upper left by reading the structure sequence from right to
left.

The size of the forward-zigzag matrix Z(λ) to be constructed is immediately determined by the given
structure sequence

S =
[

S1
δ1 S2

δ2 . . . Sn−1
δn−1 Sn

]
,

where Si ∈ {N,U}, for i = 1, . . . , n. The number of rows is the same as the number of unit columns (which
is the number of U’s in the structure sequence), and the number of columns is n, where the length of the
structure sequence is 2n− 1.

The first row of Z(λ) is determined by the initial subsequence Sinit of the structure sequence between
S1 = U and the next U in the structure sequence, i.e.,

Sinit =
[

S1
δ1 S2

δ2 . . . Sk−1
δk−1 Sk

]
,

where 2 ≤ k < n (recall that Sn must be an N), S1 = U = Sk and S2 = · · · = Sk−1 = N. If there is no second
U in the structure sequence, then we take k = n and Sinit = S; the first row of Z(λ) will in this case be the
only row of Z(λ). The first row then has k adjacent nonzero entries, beginning with a “1”, and continuing by
incrementally increasing the power of λ as you go from column to column according to the degree gaps δ1
through δk−1; the row is then completed with zeroes to give

Row1Z(λ) =
[

1 λδ1 λδ1+δ2 . . . λδ1+···+δk−1 0 . . . 0
]
.

If k < n, then the rest of Z(λ) is completed recursively as in the next step.
Observe that if k < n, then the remainder of the structure sequence S \ Sinit, together with the initial

entry Sk = U, that is,
S̃ =

[
Sk

δk Sk+1
δk+1 . . . Sn−1

δn−1 Sn

]
,

is a structure sequence for a forward-zigzag matrix Z̃(λ) with one less row and k − 1 fewer columns than

Z(λ). Then Z(λ) is recursively completed by attaching Z̃(λ) to Row1Z(λ) with the first column of Z̃(λ) in
the kth column of Z(λ), as follows:

Z(λ) =


1 λδ1 . . . λδ1+···+δk−2 λδ1+···+δk−1 0 . . . 0

0 Z̃(λ)

 .
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This reconstruction procedure thus proves the following proposition.

Proposition 4.1. A forward-zigzag matrix is uniquely determined by its structure sequence. The same is
true for backward-zigzag matrices.

As an immediate corollary of Proposition 4.1 we see that every forward-zigzag matrix does indeed have a
dual backward-zigzag matrix.

Corollary 4.2 (Existence of dual zigzag matrices). For every forward-zigzag matrix Z(λ) there exists a
unique backward-zigzag matrix that is dual to Z(λ). Similarly, any backward-zigzag matrix has a unique
forward-zigzag dual.

Proof. A zigzag matrix (forward or backward) is uniquely defined by its structure sequence by Proposition 4.1.
Then Definition 3.21 uniquely defines the structure sequence of its dual, from which the dual itself can be
uniquely reconstructed, again by Proposition 4.1.

Corollary 4.2 leads to the following definition.

Definition 4.3. For any forward-zigzag matrix Z(λ), the unique backward-zigzag matrix that is dual to Z(λ)

will be denoted by Z♦(λ), and referred to as “Z dual”. Similarly for any backward-zigzag matrix Ẑ(λ), the

unique forward-zigzag matrix that is dual to Ẑ(λ) will be denoted by Ẑ♦(λ).

Note that (Z♦)♦ = Z.
We next see how the information in the structure sequence of a forward-zigzag matrix Z(λ) can be directly

used, without first constructing Z(λ) itself, to find not only the row degrees of Z(λ) but also to deduce the
row degrees of the dual Z♦(λ).

Lemma 4.4 (Row degrees of a zigzag matrix and its dual). Suppose Z(λ) is an m× n forward-zigzag matrix
with structure sequence

S =
[

S1
δ1 S2

δ2 . . . Sn−1
δn−1 Sn

]
.

Then the row degrees of Z(λ) and Z♦(λ) can be found from S by the following (dual ) rules.

(a) Z(λ) has row degrees equal to the partial sums of degree gaps between any two consecutive U’s and after
the last U. This list of sums gives the row degrees of Z(λ), ordered from top to bottom.

(b) Z♦(λ) has row degrees equal to the partial sums of degree gaps before the first N and between any two
consecutive N’s. This list of sums gives the row degrees of Z♦(λ), ordered from top to bottom.

Proof. The argument is based on the following two simple observations concerning zigzag matrices (forward
or backward), both of which were used in the reconstruction procedure of Proposition 4.1:

(1) The nonzero entries in each row of a forward-zigzag matrix start at a unit column and continue up to
the next unit column, or all the way to the last column if there is no next unit column. In terms of the
structure sequence, this corresponds to the δ’s between consecutive U’s, or from the last U until the end.

For a backward-zigzag matrix, the nonzero entries of the first row start at the first column and continue
up to the first unit column, while the nonzero entries of all remaining rows go between consecutive unit
columns. In terms of the structure sequence of this backward-zigzag matrix, this corresponds to the δ’s
up until the first U, or between consecutive U’s.

(2) The degree of any row in a zigzag matrix (forward or backward) is the sum of the degree gaps between
the columns of the nonzero entries in that row.

Example 4.5. The structure sequence of Z(λ) in (3.2) is[
U 2 N 5 N 1 U 3 U 1 N 3 N 4 N 7 U 2 N 1 N

]
. (4.1)

It has the following partial sums between any two consecutive U’s and after the last U

(2 + 5 + 1 , 3 , 1 + 3 + 4 + 7 , 2 + 1) = (8, 3, 15, 3) .

These are exactly the row degrees of Z(λ), as can be seen in (3.2). The partial sums corresponding to the
“dual” sequence, i.e., before the first N and between any two consecutive N’s, are

(2, 5, 1 + 3 + 1, 3, 4, 7 + 2, 1) = (2, 5, 5, 3, 4, 9, 1) ,

which gives the row degrees of Z♦(λ) in order from top to bottom, as can be seen in (3.7).
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Corollary 4.6 (Row degree sums of dual zigzag matrices). Suppose Z(λ) ∈ F[λ]m×n and Z♦(λ) ∈ F[λ]k×n

are dual zigzag matrices with row degrees (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk), respectively. Then:

(a)
∑m
i=1 ηi =

∑k
i=1 εi, that is, the sum of the row degrees of a zigzag matrix is equal to the sum of the row

degrees of its dual.

(b)
∑α
i=1 ηi 6=

∑β
i=1 εi whenever (α, β) 6= (m, k), 1 ≤ α ≤ m and 1 ≤ β ≤ k; that is, a leading partial sum

of row degrees of a zigzag matrix is never equal to a leading partial sum of row degrees of its dual.

Proof. (a) From Lemma 4.4, the sum of the row degrees of any zigzag matrix (forward or backward) is equal
to the sum of the degree gaps of the matrix. Since, by Definition 3.21, both Z(λ) and Z♦(λ) have the same
degree-gap sequence, the result follows.

(b) Assume without loss of generality that Z(λ) is a forward-zigzag matrix with structure sequence S =[
S1

δ1 S2
δ2 . . . Sn−1

δn−1 Sn

]
. If α < m, then

∑α
i=1 ηi is the sum of all the degree gaps from δ1

up through some δj occurring right before a U symbol by Lemma 4.4(a), while
∑β
i=1 εi is the sum of all the

degree gaps from δ1 up through some δ` occurring right before an N symbol by Lemma 4.4(b). Since U and
N symbols are always in different positions in the structure sequence of Z(λ) and δj > 0 for j = 1, . . . , n− 1,

the two summations must be different. If α = m, then note that
∑β
i=1 εi <

∑k
i=1 εi =

∑m
i=1 ηi.

The final basic property of zigzag matrices in this section concerns a relationship between the rows of a
forward-zigzag Z(λ) and the rows of its dual Z♦(λ). Roughly speaking, this next result shows that the rows
of Z(λ) and Z♦(λ) mostly avoid each other, in the sense that their nonzero entries tend to be in different
locations. But when they do overlap, then it is only in two adjacent entry locations. This result turns out to
be key for proving the duality or “orthogonality” results of Section 4.2.

Lemma 4.7 (Overlap dichotomy lemma). Let Z(λ) be a forward-zigzag matrix, with dual backward-zigzag

matrix Z♦(λ). Consider an arbitrary row Ri from Z(λ), and an arbitrary row R̃j from Z♦(λ). Then the

nonzero entries of Ri and R̃j have either:

• no column locations in common, or

• exactly two adjacent column locations in common.

These are the only two possibilities.

Proof. We consider the following four cases, each in turn.

(1a): Ri has exactly two nonzero entries and Ri is the last row of Z(λ).

(1b): Ri has exactly two nonzero entries and Ri is not the last row of Z(λ).

(2a): Ri has more than two nonzero entries and Ri is the last row of Z(λ).

(2b): Ri has more than two nonzero entries and Ri is not the last row of Z(λ).

In case (1a), the row Ri looks like [
0 . . . 0 1 ∗

]
,

where ∗ denotes a nonzero entry (i.e., a positive power of λ), so that the last two columns of Z(λ) are unit(U),
then non-unit(N). Thus in the dual Z♦(λ) the last two columns must be complementary, i.e., NU. This forces
the last two columns of Z♦(λ) to look like 

0 0
...

...
0 0
∗ 1

 .
Thus the overlap of the nonzero entries of Ri with any row R̃j from Z♦(λ) has the dichotomy described in
the statement of the lemma.

In case (1b), the row Ri looks like[
0 . . . 0 1 ∗ 0 . . . 0

]
,

so the two nonzero columns of Ri must be UU in Z(λ), i.e., both are unit columns. Hence the two
corresponding columns of Z♦(λ) are NN. By Remark 3.16 we can then conclude that these two columns look
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like 

0 0
...

...
0 0
∗ ∗
0 0
...

...
0 0


,

and once again we have the dichotomy described in the statement of the lemma.
Moving on to case (2a), the row Ri is the last row of Z(λ) and looks like[

0 . . . 0 1 ∗ . . . ∗
]
,

so the columns of Z(λ) corresponding to these last nonzero entries are UNN...N. Thus the corresponding last
columns of Z♦(λ) are NUU...U. This implies that these last columns of Z♦(λ) must look like

0 0 . . . . . . 0
...

...
...

0 0 . . . . . . 0
∗ 1
∗ 1

. . .
. . .
∗ 1


.

Comparison of Ri with each of these row fragments of Z♦(λ) shows that the dichotomy of the lemma holds
for this case.

Finally in case (2b), the row Ri looks like[
0 . . . 0 1 ∗ . . . ∗ 0 . . . 0

]
,

with the columns corresponding to the nonzero entries being UN...NU. Thus the corresponding columns of
Z♦(λ) must be NU...UN, which in turn implies that these columns of Z♦(λ) must look like

0 0 . . . 0
...

...
...

0 0 . . . 0
∗ 1
∗ 1

. . .
. . .
∗ 1
∗ ∗

0 0 . . . 0
...

...
...

0 0 . . . 0



.

Comparison of Ri with each of these row fragments of Z♦(λ) shows that the dichotomy of the lemma also
holds for this final case, which completes the proof.

4.2 Dual Zigzag Matrices, Dual Minimal Bases, and Minimal Indices

Dual zigzag matrices allow us to construct explicit, simple examples of dual minimal bases (introduced in
Definition 2.10). For this purpose we need to define the following auxiliary matrix.

Definition 4.8 (Alternating Signs Matrix). The n× n diagonal alternating signs matrix Σn is defined by

Σn := diag(1,−1, 1,−1, . . . , (−1)n−1) . (4.2)

As a consequence of Lemma 4.7, the truth of the “orthogonality” relation (4.3) in the next result becomes
transparent. We can also immediately see why the alternating signs matrix Σn is needed in the story.
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Lemma 4.9. Suppose Z(λ) is any m× n zigzag matrix, either forward or backward, and let Z♦(λ) be its
(n−m)× n dual zigzag matrix. Then

Z(λ) ·Σn ·
(
Z♦(λ)

)T
= 0m×(n−m) , (4.3)

and Z(λ) and (Z♦(λ) ·Σn) are dual minimal bases.

Proof. Let us assume without loss of generality that Z(λ) is a forward-zigzag matrix. As was proved in
Lemma 4.7, the nonzero entries of a row of Z(λ) and the nonzero entries of a row of Z♦(λ) have exactly two
adjacent column locations in common, or none at all. In the first case the degree increase in the nonzero
entries in the row of Z(λ) located in the adjacent columns is the same as the degree decrease in the nonzero
entries in the same columns of the considered row of Z♦(λ). Orthogonality then follows because of the sign
matrix in the middle. In the second case, orthogonality is trivial. So, (4.3) is proved. Theorem 3.3 and the
corresponding result for backward-zigzag matrices (see paragraph above Example 3.15) imply that Z(λ) and
Z♦(λ) are both (full row rank) minimal bases, and from Theorem 2.4 we get that (Z♦(λ) · Σn) is also a
minimal basis. Equation (4.3) yields Z(λ) · (Z♦(λ) ·Σn)T = 0, which combined with the sizes of Z(λ) and
(Z♦(λ) ·Σn) proves that these two matrices are dual minimal bases according to Definition 2.10.

As a direct corollary of the previous lemma, the comments in the paragraph just after Definition 2.10,
and the developments in Remark 2.14, we obtain the complete eigenstructure of any zigzag matrix.

Corollary 4.10 (Eigenstructure and minimal bases of zigzag matrices). Let Z(λ) be an m×n zigzag matrix,
either forward or backward, with row degrees (η1, η2, . . . , ηm), and let d = maxi=1,...,m ηi. Then:

(a) Z(λ) has no finite eigenvalues.

(b) Z(λ) has an eigenvalue at infinity if and only if not all row degrees (η1, . . . , ηm) are equal. In this case,
the degrees of the elementary divisors of Z(λ) at ∞ are {d− ηi : d− ηi > 0, i = 1, . . . ,m}.

(c) Z(λ) has no left minimal indices.

(d) The right minimal indices of Z(λ) are the row degrees of its dual zigzag matrix Z♦(λ), and (Z♦(λ)·Σn)T

is a right minimal basis of Z(λ).

We emphasize that as a consequence of Corollary 4.10 and Lemma 4.4, the complete eigenstructure of a
zigzag matrix can be determined very easily, essentially by a simple inspection of the matrix entries.

5 The Inverse Row Degree Problem for Dual Zigzag Matrices

Corollary 4.6 establishes two properties that must be satisfied by the row degrees of any pair of dual zigzag
matrices. In this section we solve the corresponding inverse problem, i.e., we prove that given any two lists of
positive integers (η1, . . . , ηm) and (ε1, . . . , εk) for which the equality in Corollary 4.6(a) and the inequalities
in Corollary 4.6(b) hold, there exists a pair of dual zigzag matrices Z(λ) and Z♦(λ) with precisely these row
degrees, and with the degrees in the given row order. In fact, this pair is unique once we decide which row
degree list is attached to the forward-zigzag matrix and which list to the backward-zigzag matrix in the dual
pair. In addition, we present a very simple procedure to construct this unique pair of dual zigzag matrices. In
light of the result of Lemma 4.9, the solution of this problem also immediately solves an inverse row degree
problem for dual minimal bases, but a very particular one with special additional conditions. In general some
of the row degrees in a dual minimal basis pair may be zero, something that never happens for a zigzag
matrix; furthermore, the row degrees in a dual minimal basis pair may not necessarily satisfy the inequalities
in Corollary 4.6(b). The complete solution of the inverse row degree problem for general dual minimal bases
is the subject of Section 6, and is based on the solution of the special inverse problem given here in Section 5.

The main result in this section is Theorem 5.1.

Theorem 5.1. Let (η1, . . . , ηm) and (ε1, . . . , εk) be two lists of positive integers such that

m∑
i=1

ηi =

k∑
i=1

εi and

α∑
i=1

ηi 6=
β∑
i=1

εi, whenever (α, β) 6= (m, k), 1 ≤ α ≤ m and 1 ≤ β ≤ k. (5.1)

Then there exists a unique forward-zigzag matrix Z(λ) ∈ F[λ]m×(m+k) with row degrees (η1, . . . , ηm) such that
its dual backward-zigzag matrix Z♦(λ) ∈ F[λ]k×(m+k) has row degrees (ε1, . . . , εk). In addition, the structure
sequence of Z(λ) is constructed via the following five-step procedure:
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Step 1. Define `0 := 0, compute the partial sums `α :=
∑α
i=1 ηi for α = 1, . . . ,m− 1, and the partial sums

rβ :=
∑β
i=1 εi for β = 1, . . . , k.

Step 2. Merge the lists of different integers `0 < `1 < · · · < `m−1 and r1 < r2 < · · · < rk into a single ordered
list of length n := m+ k

`0 < · · · < `α < · · · < rβ < · · · < `γ < · · · < rξ < · · · < rk . (5.2)

Step 3. The degree-gap sequence δ1, . . . , δn−1 of Z(λ) is obtained by computing the n− 1 differences between
adjacent entries in the sequence (5.2).

Step 4. The unit column sequence of Z(λ) is obtained by replacing each `α in (5.2) by the symbol U, and
each rβ in (5.2) by the symbol N.

Step 5. Interleave the unit column sequence from Step 4 with the degree-gap sequence from Step 3 to get the
structure sequence of Z(λ).

Proof. The existence of a forward-zigzag matrix with the desired properties is established by showing that
the five-step procedure in the statement always yields a structure sequence corresponding to a forward-zigzag
matrix with these properties. Since Proposition 4.1 guarantees that a forward-zigzag matrix is determined by
its structure sequence, this will certainly prove the existence part of the theorem. We use Lemma 4.4 to verify
that the structure sequence generated by Steps 1-5 gives the desired row degrees for the corresponding Z(λ)
and Z♦(λ). For the row degrees of Z(λ), by Lemma 4.4(a) we have to look at the sum of the degree gaps
between successive U’s, and after the last U in the structure sequence. But successive U’s in the structure
sequence come from successive `’s in the merged list (5.2), let’s say `i−1 and `i. Extracting this sublist from
(5.2) we have

`i−1 < rj < rj+1 < · · · < rj+s < `i . (5.3)

The sum of the degree gaps corresponding to this sublist is the telescoping sum

(`i − rj+s) + (rj+s − rj+s−1) + · · ·+ (rj+1 − rj) + (rj − `i−1) = `i − `i−1 = ηi .

In a similar way, the structure sequence after the last U comes from a sublist of (5.2) of the type `m−1 <
rt < rt+1 < · · · < rk and the sum of the corresponding degree gaps is equal to rk − `m−1 = ηm, where we
have used the first equality in (5.1). Thus we see by Lemma 4.4(a) that we recover exactly the desired row
degrees (η1, η2, . . . , ηm) for Z(λ).

For the row degrees of Z♦(λ), by Lemma 4.4(b) we have to look at the sum of the degree gaps before the
first N and between successive N’s in the structure sequence. Two successive N’s now correspond to a sublist
of (5.2) of the form

ri−1 < `j < `j+1 < · · · < `j+s < ri , (5.4)

whose associated sum of degree gaps is the telescoping sum

(ri − `j+s) + (`j+s − `j+s−1) + · · ·+ (`j+1 − `j) + (`j − ri−1) = ri − ri−1 = εi ,

while the structure sequence before the first N comes from a sublist of (5.2) of the type `0 < `1 < . . . < `s < r1,
which gives a sum of degree gaps equal to r1 − `0 = ε1. Thus by Lemma 4.4(b) we recover the desired row
degrees (ε1, ε2, . . . , εk) for Z♦(λ) from the five-step procedure in the statement.

Now that existence has been proved, we establish the uniqueness of dual forward and backward-zigzag
matrices Z(λ) ∈ F[λ]m×(m+k) and Z♦(λ) ∈ F[λ]k×(m+k) with prescribed row degrees (η1, . . . , ηm) and
(ε1, . . . , εk), respectively. To this end, we will show that these row degrees uniquely determine the structure
sequence of Z(λ) (and so also the one of Z♦(λ)). Let

S =
[

U δ1 S2
δ2 . . . Sn−1

δn−1 N

]
be any forward-zigzag structure sequence of Z(λ) compatible with the prescribed row degrees. The number of
U’s in S is m and the number of N’s is k by Remark 3.6. As a consequence of Lemma 4.4(a), `α =

∑α
i=1 ηi

is equal to the sum of the degree gaps from δ1 up until the δi just before the (α+ 1)th symbol U in S for

α = 1, . . . ,m− 1, and, as a consequence of Lemma 4.4(b), rβ =
∑β
i=1 εi is equal to the sum of the degree

gaps from δ1 up until the δj just before the βth symbol N in S for β = 1, . . . , k. This and the fact that all
the degree gaps are positive imply that the merged list (5.2) determines the order of all the U’s and N’s in S
by replacing each `α by U and each rβ by N, and also that the differences between adjacent entries in the
sequence (5.2) are precisely the degree gaps. Therefore S has been uniquely determined by the prescribed
row degrees.
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Example 5.2. To illustrate the five-step procedure in Theorem 5.1, we use the lists (η1, η2, η3, η4) = (8, 3, 15, 3)
and (ε1, ε2, . . . , ε7) = (2, 5, 5, 3, 4, 9, 1) from Example 4.5 to reconstruct Z(λ) in (3.2). For these two row
degree lists, the partial sums lists in Step 1 are[

`0 `1 `2 `3
0 8 11 26

]
and

[
r1 r2 r3 r4 r5 r6 r7
2 7 12 15 19 28 29

]
.

The single merged list is then[
`0 r1 r2 `1 `2 r3 r4 r5 `3 r6 r7
0 2 7 8 11 12 15 19 26 28 29

]
.

From this merged list we now read off the unit column sequence U,N,N,U,U,N,N,N,U,N,N and the degree
gap sequence 2, 5, 1, 3, 1, 3, 4, 7, 2, 1 . Altogether, these two sequences define exactly the structure sequence of
Z(λ) in (3.2), as desired.

The five-step procedure in Theorem 5.1 builds the structure sequence of the unique forward-zigzag matrix
Z(λ) corresponding to the prescribed row degrees of Z(λ) and Z♦(λ). In the particular case where all the
elements in the list (η1, . . . , ηm) are equal, except perhaps the last one which can be less than or equal to the
others, the construction presented in Theorem 5.1 can be considerably simplified; indeed it is possible to
give an explicit easy description of Z(λ) directly in terms of its entries without first computing its structure
sequence. This entrywise construction is presented in detail in Theorem 5.3, in a way that will be very
convenient for Section 7. Observe that if (η1, . . . , ηm−1, ηm) = (d, . . . , d, ηm), where d is a positive integer
and ηm ≤ d, then

∑α
i=1 ηi = αd is a multiple of d for α = 1, . . . ,m− 1 and therefore the inequalities in (5.1)

mean simply that
∑β
i=1 εi is not a multiple of d for β = 1, . . . , k − 1, which is imposed as assumption in

Theorem 5.3. Since ηm ≤ d is not fixed,
∑k
i=1 εi in Theorem 5.1 may or may not be a multiple of d, and

we express this fact in Theorem 5.3 in a concise way as
∑k
i=1 εi = dqk + wk with qk and wk nonnegative

integers such that 0 < wk ≤ d. So
∑k
i=1 εi is a multiple of d if wk = d and is not otherwise. We emphasize

the difference between 0 < wk ≤ d and the standard condition used in the Euclidean integer division.

Theorem 5.3. Let (ε1, . . . , εk) be a list of positive integers and d be another positive integer such that

β∑
i=1

εi = d qβ + wβ with 0 < wβ < d for 1 ≤ β ≤ k − 1 and 0 < wk ≤ d, (5.5)

for nonnegative integers q1, . . . , qk and positive integers w1, . . . , wk. Then there exists a unique forward-zigzag
matrix Z(λ) ∈ F[λ](qk+1)×(qk+1+k) with row degrees (d, . . . , d, wk), such that its dual backward-zigzag matrix
Z♦(λ) ∈ F[λ]k×(qk+1+k) has row degrees (ε1, . . . , εk). In addition:

(a) The nonzero entries of Z(λ) are

1, . . . , 1︸ ︷︷ ︸
qk+1

, λd, . . . , λd︸ ︷︷ ︸
qk

, and λw1 , . . . , λwk . (5.6)

(b) The (qk + 1) entries 1 in (5.6) are the leading 1’s of the rows of Z(λ) and are located in the positions
(1, 1) and

( p , p+ max {β : qβ < (p− 1)} ) , for p = 2, . . . , qk + 1 ,

where if the set {β : qβ < (p− 1)} is empty, we take its maximum to be 0.

(c) The qk entries λd in (5.6) are the trailing nonzero entries in the rows 1, 2, . . . , qk of Z(λ) and therefore
are located in the columns corresponding to the leading 1’s of the rows 2, 3, . . . , qk + 1.

(d) Each entry λwi in (5.6) is located in the position (qi + 1 , qi + 1 + i) of Z(λ), for i = 1, 2, . . . , k, where
qi is defined in (5.5). Observe that λwk is the trailing entry of the last row of Z(λ).

Proof. If we take (η1, η2, . . . , ηqk+1) = (d, . . . , d, wk), then
∑qk+1
i=1 ηi = dqk + wk,

∑α
i=1 ηi = dα, for α =

1, . . . , qk, and the assumptions (5.5) imply the assumptions (5.1) in Theorem 5.1 with m = qk + 1. Therefore,
Theorem 5.1 guarantees the existence and uniqueness of Z(λ) with the properties of the statement. It remains
to prove parts (a), (b), (c), and (d). For (a), note that Z(λ) has qk + 1 entries equal to 1 and qk entries equal
to λd simply as a consequence of the definition of a forward-zigzag matrix and the row degrees that Z(λ) has.
The presence of the remaining nonzero entries will be established later.
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Parts (b), (c), and (d) will be proved by using the five-step procedure in Theorem 5.1 applied to
(η1, η2, . . . , ηqk+1) = (d, . . . , d, wk) and (ε1, . . . , εk) for constructing the structure sequence of Z(λ). In this
situation, the partial sums in Step 1 are `0 = 0, `α = dα for α = 1, . . . , qk, and rβ = dqβ +wβ for β = 1, . . . , k.
Next, recall that the position of the pth U column of Z(λ) corresponds to the position of `p−1 = (p− 1)d in
the list (5.2) (note that the first U column corresponds to `0) and observe that this position is

p+ #{rβ : rβ < (p− 1)d},

where the summand p counts the terms `0, . . . , `p−1. This proves (b) since the leading 1 of the pth row of
Z(λ) is located in the pth U column of Z(λ). Taking into account which are the row degrees of Z(λ) and the
definition of a forward-zigzag matrix, we get also (c).

For proving (d) and the remaining part of (a), note that, according to Theorem 5.1, the N columns of
Z(λ) located between the pth and (p+ 1)th U columns (p < qk + 1) correspond to those terms rβ ’s in (5.2)
such that

(p− 1)d = `p−1 < rj < rj+1 < · · · < rj+s < `p = pd . (5.7)

Therefore, these terms are of the form

rt = d(p− 1) + wt with 0 < wt < d

and in the list (5.2) they are in positions p+ t for t = j, . . . , j + s, since in `0 < · · · < `p−1 < · · · < rt there
are p terms `α’s and t terms rβ ’s. Moreover note that the (unique) nonzero entries in these N columns are
located in the positions (p, p+ t) for t = j, . . . , j + s, since the 1 of the pth U column is in the pth row of
Z(λ). The degree gaps corresponding to the sublist (5.7) with `p removed are by Theorem 5.1

wj , wj+1 − wj , . . . , wj+s − wj+s−1,

and so the entries of Z(λ) located in (p, p+ j), (p, p+ j + 1), . . . , (p, p+ j + s) are λwj , λwj+1 , . . . , λwj+s , as a
consequence of summing the degree gaps. This proves (d) for all wi such that ri = dqi + wi corresponds in
(5.2) to an N column located between two U columns. For those N columns of Z(λ) located after its last U
column, we proceed as follows. Since the last U column is the (qk + 1)th U column, the N columns after it
correspond to those terms rβ ’s in (5.2) such that

qkd = `qk < rj < rj+1 < · · · < rk−1 < rk . (5.8)

Therefore, they are of the form

rt = dqk + wt with 0 < wt < d if t < k , and 0 < wk ≤ d ,

i.e., they all have qt = qk, and in the list (5.2) they are in positions qk + 1 + t for t = j, . . . , k. Moreover note
that the nonzero entries in these N columns are located in the positions (qk + 1, qk + 1 + t) for t = j, . . . , k,
since the 1 of the (qk + 1)th U column is in the (qk + 1)th row. The rest of the argument is the same as
the previous one except that in the computation of the needed degree gaps the last term in the sublist (5.8)
is not removed. So, the proof of (d) is complete. Observe that in the proof of (d) we have scanned all N
columns and all the nonzero entries in those columns. Therefore the proof of (a) is also complete.

Example 5.4. To illustrate the construction presented in Theorem 5.3, we consider the list (ε1, ε2, ε3, ε4, ε5) =
(2, 3, 5, 1, 5), with k = 5, and take d = 4. Then the partial sums in (5.5) are

1∑
i=1

εi = 2 = 4 · 0 + 2 ,

2∑
i=1

εi = 5 = 4 · 1 + 1 ,

3∑
i=1

εi = 10 = 4 · 2 + 2 ,

4∑
i=1

εi = 11 = 4 · 2 + 3 ,

5∑
i=1

εi = 16 = 4 · 3 + 4 ,

which implies q5 = 3 and so Z(λ) has size 4× 9. In addition, w1 = 2, w2 = 1, w3 = 2, w4 = 3, w5 = 4, which
means in particular that all the row degrees of Z(λ) are in this case equal to 4. Theorem 5.3(b) provides the
following positions for the leading 1’s of the four rows of Z(λ):

(1, 1), (2, 2 + 1) = (2, 3), (3, 3 + 2) = (3, 5), (4, 4 + 4) = (4, 8),

and Theorem 5.3(d) provides the following positions for λw1 = λ2, λw2 = λ, λw3 = λ2, λw4 = λ3, λw5 = λ4:

λ2 in (1, 1 + 1) = (1, 2), λ in (2, 2 + 2) = (2, 4), λ2 in (3, 3 + 3) = (3, 6),

λ3 in (3, 3 + 4) = (3, 7), λ4 in (4, 4 + 5) = (4, 9),
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respectively. Therefore

Z(λ) =


1 λ2 λ4

1 λ λ4

1 λ2 λ3 λ4

1 λ4

 . (5.9)

Applying Lemma 4.4(b) to Z(λ), we easily check that Z♦(λ) has row degrees (2, 3, 5, 1, 5), i.e., (ε1, ε2, ε3, ε4, ε5)
as predicted by Theorem 5.3.

The structure sequence of Z(λ) can also be deduced from the five-step procedure in Theorem 5.1 by
taking (η1, η2, η3, η4) = (4, 4, 4, 4). For this purpose note that the partial sums in Step 1 are[

`0 `1 `2 `3
0 4 8 12

]
and

[
r1 r2 r3 r4 r5
2 5 10 11 16

]
.

The single merged list is then [
`0 r1 `1 r2 `2 r3 r4 `3 r5
0 2 4 5 8 10 11 12 16

]
.

From this merged list we now read off the unit column sequence U,N,U,N,U,N,N,U,N and the degree-gap
sequence 2, 2, 1, 3, 2, 1, 1, 4 . Altogether, these two sequences define the structure sequence of Z(λ) in (5.9).

6 The Inverse Row Degree Problem for Dual Minimal Bases

In this section, we use the results in Section 5 to show how to concretely construct dual minimal bases (see
Definition 2.10) for any two lists of prescribed row degrees (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk) satisfying only
the necessary condition (2.2). This result is stated in Theorem 6.1, which is one of the main contributions of
this paper. Observe that in Theorem 6.1, we use as the (1, 1) blocks inside the block diagonal matrices M(λ)
and N(λ) the matrices [

Im0
0m0×k0

]
and

[
0k0×m0

Ik0
]
, (6.1)

whose meaning is the standard one if m0 6= 0 and k0 6= 0. In the case m0 = k0 = 0, the matrices in
(6.1) should be understood as empty matrices, i.e., they are not present in M(λ) and N(λ). In the cases
m0 = 0, k0 6= 0 and m0 6= 0, k0 = 0, the meanings of the matrices in (6.1) are[

I0 00×k0
]

= 00×k0 ,
[

0k0×0 Ik0
]

= Ik0 and
[
Im0

0m0×0
]

= Im0 ,
[

00×m0
I0
]

= 00×m0 ,

where the matrices 00×k0 and 00×m0
on the right-hand sides contribute k0 and m0 initial zero columns to

M(λ) and N(λ), respectively, with no additional rows.

Theorem 6.1. Let (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk) be two lists of nonnegative integers such that

m∑
i=1

ηi =

k∑
j=1

εj . (6.2)

Then there exist two matrix polynomials M(λ) ∈ F[λ]m×(m+k) and N(λ) ∈ F[λ]k×(m+k) that are dual minimal
bases, and whose row degrees are (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk), respectively.

Moreover, there are infinitely many pairs of dual minimal bases with row degrees (η1, η2, . . . , ηm) and
(ε1, ε2, . . . , εk), and one of these pairs can be constructed, up to row permutations, as follows: Let the lists
(η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk) be ordered so that

0 = η1 = · · · = ηm0
, 0 < ηi if m0 < i and 0 = ε1 = · · · = εk0 , 0 < εj if k0 < j ,

and define the set

{(m1, k1), (m2, k2), . . . , (mt, kt)} =

(γ, ρ) :

γ∑
i=m0+1

ηi =

ρ∑
j=k0+1

εj , m0 + 1 ≤ γ ≤ m, k0 + 1 ≤ ρ ≤ k

 ,

where m1 < · · · < mt = m and k1 < · · · < kt = k. Then:

(a) For each i = 1, . . . , t, there exists a unique forward-zigzag matrix Zi(λ) with row degrees (ηmi−1+1, . . . , ηmi
)

such that its dual backward-zigzag matrix Z♦i (λ) has row degrees (εki−1+1, . . . , εki).

18



(b) The matrices

M(λ) :=


Im0

0m0×k0
Z1(λ)

. . .

Zt(λ)

 and

N(λ) :=


0k0×m0

Ik0
Z♦1 (λ) ·Σ(1)

. . .

Z♦t (λ) ·Σ(t)

 ,
where Σ(1), . . . , Σ(t) are alternating signs matrices of appropriate sizes, are dual minimal bases with
row degrees (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk), respectively, and sizes m× (m+ k) and k × (m+ k),
respectively.

Proof. For brevity, in the proof we set n := m+k. First, observe that if M(λ) ∈ F[λ]m×n and N(λ) ∈ F[λ]k×n

are dual minimal bases with row degrees (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk), respectively, and Q is any

n × n nonsingular constant matrix, then M̃(λ) = M(λ)Q and Ñ(λ) = N(λ)Q−T are dual minimal bases

with the same row degrees and the same sizes as M(λ) and N(λ). It is obvious that M̃(λ) has the

same row degrees and size as M(λ), and that Ñ(λ) has the same row degrees and size as N(λ). Also

M̃(λ)Ñ(λ)T = M(λ)QQ−1N(λ)T = M(λ)N(λ)T = 0. To see that M̃(λ) is a minimal basis, we use Theorem

2.4 and the facts that M̃(λ0) = M(λ0)Q has full row rank for all λ0 ∈ F, since M(λ0) has full row rank, and

that M̃hr = MhrQ has also full row rank since Mhr has (recall that Mhr is the highest-row-degree coefficient

matrix of M(λ)). A similar argument proves that Ñ(λ) is a minimal basis. Therefore, if we find one pair of
dual minimal bases with the degrees prescribed in the statement, we can construct infinitely many of them
by choosing infinitely many nonsingular matrices Q.

Next, we prove (a). The definition of {(m1, k1), (m2, k2), . . . , (mt, kt)} implies

mi∑
j=mi−1+1

ηj =

ki∑
j=ki−1+1

εj , (6.3)

which is obvious for i = 1 and, for 2 ≤ i ≤ t, follows by subtracting
∑mi−1

j=m0+1 ηj =
∑ki−1

j=k0+1 εj from∑mi

j=m0+1 ηj =
∑ki
j=k0+1 εj , and also

α∑
j=mi−1+1

ηj 6=
β∑

j=ki−1+1

εj , whenever (α, β) 6= (mi, ki), mi−1 + 1 ≤ α ≤ mi and ki−1 + 1 ≤ β ≤ ki, (6.4)

since otherwise the set {(m1, k1), (m2, k2), . . . , (mt, kt)} would have additional elements (m̃, k̃) such that

mi−1 + 1 ≤ m̃ < mi and ki−1 + 1 ≤ k̃ < ki. Observe that (6.3) and (6.4) are precisely the assumptions
(5.1) of Theorem 5.1 for the lists of positive integers (ηmi−1+1, . . . , ηmi) and (εki−1+1, . . . , εki). Therefore, (a)
follows from Theorem 5.1.

Now we proceed to prove (b). The row degrees of M(λ) and N(λ) are (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk),
respectively, as a consequence of (a). The size of each Zi(λ) in (a) is (mi −mi−1)× (mi −mi−1 + ki − ki−1)
and the one of Z♦i (λ) is (ki − ki−1)× (mi −mi−1 + ki − ki−1) by Corollary 3.23. So, by adding these sizes
and the ones of the first diagonal blocks of M(λ) and N(λ), we get that M(λ) has size m × (m + k) and
N(λ) has size k × (m+ k). Part (a) and Lemma 4.9 imply immediately M(λ)N(λ)T = 0. Finally, we prove
that M(λ) and N(λ) are both minimal bases. For this purpose, note that M(λ0) has full row rank for all
λ0 ∈ F, because each Zi(λ0) has full row rank for i = 1, . . . , t, and that M(λ) is row reduced, because each
Zi(λ) is row reduced for i = 1, . . . , t. Therefore, Theorem 2.4 guarantees that M(λ) is a minimal basis. A
similar argument proves that N(λ) is also a minimal basis. This completes the proof of Theorem 6.1.

There are several important points related to Theorem 6.1 that are worth highlighting.

• The first is the complete straightforwardness of the construction of M(λ) and N(λ) via the five-step
procedure in Theorem 5.1, applied to each pair of lists (ηmi−1+1, . . . , ηmi) and (εki−1+1, . . . , εki), together
with the construction described at the beginning of Section 4.1.
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• The second is the non-uniqueness of dual minimal bases with prescribed row degrees satisfying the equal
sum constraint (6.2). We have already seen one source of non-uniqueness in the proof of Theorem 6.1,
but we emphasize that there are other sources of non-uniqueness. For instance, note that any of the
diagonal blocks of M(λ) could be replaced by a backward-zigzag matrix, together with an appropriate
adjustment in the corresponding diagonal block of N(λ). Re-ordering the lists of prescribed row degrees
provides yet another source of non-uniqueness. Note that different orders of the nonzero row degrees
may produce different sets of pairs of indices for matching sums {(m1, k1), (m2, k2), . . . , (mt, kt)}, even
yielding sets with different cardinalities and different numbers of dual zigzag matrices in the blocks of
M(λ) and N(λ). Consider for instance (η1, η2, η3) = (1, 2, 3) and (ε1, ε2, ε3) = (2, 3, 1) with no matching
partial sums and the reordering (η′1, η

′
2, η
′
3) = (1, 2, 3) and (ε′1, ε

′
2, ε
′
3) = (1, 2, 3), for which all partial

sums match.

Example 6.2. Let us illustrate the construction in Theorem 6.1(a)-(b) with the lists (η1, η2, η3, η4) = (0, 2, 4, 3)
and (ε1, ε2, ε3, ε4) = (1, 1, 2, 5). For these lists m0 = 1, k0 = 0,

2∑
i=2

ηi = 2,

3∑
i=2

ηi = 6,

4∑
i=2

ηi = 9, and

1∑
i=1

εi = 1,

2∑
i=1

εi = 2,

3∑
i=1

εi = 4,

4∑
i=1

εi = 9.

So, the set of pairs of indices for matching sums is {(m1, k1), (m2, k2)} = {(2, 2), (4, 4)}. Therefore, we need
to apply the five-step procedure in Theorem 5.1 (in these cases it is also possible to use Theorem 5.3) to the
following sublists of row degrees:

1. (η2) = (2), (ε1, ε2) = (1, 1) for building the dual zigzag matrices

Z1(λ) =
[

1 λ λ2
]

and Z♦1 (λ) =

[
λ 1

λ 1

]
,

where the simple details of the application of Theorem 5.1 have been omitted for brevity, and

2. (η3, η4) = (4, 3), (ε3, ε4) = (2, 5) for building the dual zigzag matrices

Z2(λ) =

[
1 λ2 λ4

1 λ3

]
and Z♦2 (λ) =

[
λ2 1

λ5 λ3 1

]
,

where the details of the application of Theorem 5.1 have again been omitted.

With these zigzag matrices in hand, we finally construct the dual minimal bases in Theorem 6.1(b):

M(λ) =


1

1 λ λ2

1 λ2 λ4

1 λ3

 , N(λ) =


0 λ −1

−λ 1

λ2 −1
−λ5 λ3 −1

 ,
which realize the prescribed row degrees (η1, η2, η3, η4) = (0, 2, 4, 3) and (ε1, ε2, ε3, ε4) = (1, 1, 2, 5), respec-
tively.

We finish this section by combining the classical result of Forney stated in Theorem 2.12 with the existence
part of Theorem 6.1 in the following definitive characterization theorem on row degrees of dual minimal bases.

Theorem 6.3. There exists a pair M(λ) ∈ F[λ]m×(m+k) and N(λ) ∈ F[λ]k×(m+k) of dual minimal bases

with row degrees (η1, . . . , ηm) and (ε1, . . . , εk), respectively, if and only if
∑m
i=1 ηi =

∑k
j=1 εj .

7 Explicit Realization of Completely Singular Polynomials

The recent paper [5] has established very simple necessary and sufficient conditions for the existence of a
polynomial matrix when its degree, finite and infinite elementary divisors, and left and right minimal indices
are prescribed. The proof of these necessary and sufficient conditions (see Theorem 3.3 or the equivalent
formulation Theorem 3.12 in [5]) combines the Index Sum Theorem (stated in Theorem 2.13) with the
construction of a polynomial matrix P (λ) which realizes the prescribed structure and degree. However, the
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construction in [5] is rather complicated, and the prescribed elementary divisors and minimal indices are
not apparent “by simple inspection” of P (λ). In this section, we present a first step towards constructing a
polynomial P (λ) which displays “by simple inspection” the prescribed structure. To this end, we consider
the more restricted problem of realizing prescribed lists of only left and right minimal indices by a completely
singular polynomial matrix of arbitrary prescribed degree d, i.e., by a singular polynomial matrix of degree d
with no elementary divisors at all, associated to either finite or infinite eigenvalues. In this case, the necessary
and sufficient conditions established in [5] become even simpler, since given a degree d, a list (η1, η2, . . . , ηm)
of left minimal indices, and a list (ε1, ε2, . . . , εk) of right minimal indices, there exists a completely singular
polynomial matrix Q(λ) of degree d having these left and right minimal indices if and only if

d is a divisor of µ :=

( m∑
i=1

ηi +

k∑
j=1

εj

)
. (7.1)

Observe that the necessary and sufficient condition (7.1) amounts to saying that d, (η1, η2, . . . , ηm), and
(ε1, ε2, . . . , εk) satisfy the Index Sum Theorem. We will see that zigzag matrices and their properties enable
us to give an elegant solution to this completely singular realization problem; based on them we will show
how to explicitly construct a realization Q(λ) that is very simple, and has the additional property that its
left and right minimal indices are immediately apparent “by inspection”, in the same sense as the minimal
indices of a pencil in Kronecker canonical form can be read off essentially by inspection.

Our final realization result is Theorem 7.8, whose proof relies on the solution of two simpler realization
problems in Lemmas 7.1 and 7.5. These simpler results provide the building blocks of the definitive realization
result, but are also of independent interest. Our first result, Lemma 7.1, considers the realization of a list of
positive right minimal indices which is not decomposable (in the given order) into shorter realizable lists. It
is a direct corollary of Theorem 5.3 and Corollary 4.10.

Lemma 7.1. Let (ε1, ε2, . . . , εk) be a list of positive integers and d another positive integer such that

k∑
i=1

εi = d r and

β∑
i=1

εi is not a multiple of d for β = 1, . . . , k − 1, (7.2)

where r is an integer. Then there exists a unique forward-zigzag matrix Z(λ) ∈ F[λ]r×(r+k) with row degrees
all equal to d such that its dual backward-zigzag matrix Z♦(λ) ∈ F[λ]k×(r+k) has row degrees (ε1, . . . , εk).
This Z(λ) is a completely singular polynomial matrix of degree d with right minimal indices (ε1, ε2, . . . , εk)
and no left minimal indices.

Proof. The assumptions (7.2) are precisely the assumptions (5.5) in Theorem 5.3 for wk = d and qk = r − 1.
Therefore, Theorem 5.3 implies the existence and uniqueness of Z(λ) ∈ F[λ]r×(r+k) and Z♦(λ) ∈ F[λ]k×(r+k)

with the row degrees of the statement. It is obvious that Z(λ) is a polynomial matrix with degree d, and
Corollary 4.10 guarantees that Z(λ) has no elementary divisors at all, has right minimal indices (ε1, ε2, . . . , εk),
and has no left minimal indices.

Remark 7.2. Since Z(λ)T in Lemma 7.1 is a completely singular polynomial matrix of degree d which
realizes the list of positive left minimal indices (ε1, ε2, . . . , εk), we see that Lemma 7.1 also allows us to realize
prescribed lists of left minimal indices with prescribed degree.

Remark 7.3. Observe that given a list of prescribed positive right minimal indices (ε1, ε2, . . . , εk) satisfying
(7.2), parts (a), (b), (c), and (d) in Theorem 5.3 allow us to very easily construct the completely singular
polynomial matrix Z(λ) mentioned in Lemma 7.1, which has degree d and realizes these minimal indices. In
addition, since Z(λ) is a forward-zigzag matrix, it has indeed a very simple structure, and we can read off its
right minimal indices essentially by inspection of Z(λ) via Lemma 4.4(b), i.e., as the row degrees of its dual.

Example 7.4. Given the list (ε1, ε2, ε3, ε4, ε5) = (2, 3, 5, 1, 5) of prescribed right minimal indices and the
prescribed degree d = 4, Example 5.4 shows how to construct the completely singular polynomial matrix
Z(λ) in (5.9) with the prescribed degree 4 and the prescribed right minimal indices.

Note that if the condition
∑k
i=1 εi = dr in (7.2) holds, but

∑β
i=1 εi is a multiple of d for some β =

1, . . . , k− 1, then
∑k
i=β+1 εi is also a multiple of d, and we can separately realize with two completely singular

polynomials Z1(λ) and Z2(λ) of degree d the two lists of right minimal indices (ε1, . . . , εβ) and (εβ+1, . . . , εk),
respectively; in fact, if both conditions in (7.2) hold for the corresponding sublists, then Z1(λ) and Z2(λ) can
be chosen to be forward-zigzag matrices by Lemma 7.1. Then, according to Lemma 2.8, Z1(λ)⊕ Z2(λ) is a
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completely singular polynomial matrix of degree d which realizes the whole list (ε1, . . . , εk) of right minimal
indices. In short, we see that if the second condition in (7.2) is not satisfied, then we can decompose the
realization problem into two smaller realization subproblems for the same degree. However, we emphasize that
even when (7.2) is satisfied, it may be possible to decompose the realization problem into smaller ones with
the same degree by a suitable re-ordering of the given list of minimal indices. Consider for instance the list
(ε1, ε2, ε3, ε4, ε5) = (2, 3, 5, 1, 5) of right minimal indices in Example 7.4 and its sublists (ε1, ε4, ε5) = (2, 1, 5)
and (ε2, ε3) = (3, 5), which each satisfy both conditions in (7.2) for d = 4, and so can be realized independently
by two completely singular polynomials Z1(λ) and Z2(λ) of degree 4. Therefore, Z1(λ)⊕Z2(λ) is a completely
singular polynomial of degree 4 with right minimal indices (ε1, ε2, ε3, ε4, ε5) = (2, 3, 5, 1, 5).

Lemma 7.5 considers the joint realization of two lists of positive left and right minimal indices which are
not decomposable (in the given order) into shorter realizable lists.

Lemma 7.5. Let (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk) be two lists of positive integers and d another positive
integer such that

(i)

m∑
i=1

ηi +

k∑
j=1

εj = d r, for an integer r,

(ii)

α∑
i=1

ηi is not a multiple of d for α = 1, . . . ,m, and

β∑
i=1

εi is not a multiple of d for β = 1, . . . , k.

Let
m∑
i=1

ηi = d q̃m + w̃m with 0 < w̃m < d and

k∑
i=1

εi = d qk + wk, with 0 < wk < d, (7.3)

for nonnegative integers q̃m, qk and positive integers w̃m, wk. Then:

(a) There exists a unique forward-zigzag matrix Z̃(λ) ∈ F[λ](q̃m+1)×(q̃m+1+m) with row degrees (d, . . . , d, w̃m),

such that its dual backward-zigzag matrix Z̃♦(λ) ∈ F[λ]m×(q̃m+1+m) has row degrees (η1, . . . , ηm).

(b) There exists a unique forward-zigzag matrix Z(λ) ∈ F[λ](qk+1)×(qk+1+k) with row degrees (d, . . . , d, wk),
such that its dual backward-zigzag matrix Z♦(λ) ∈ F[λ]k×(qk+1+k) has row degrees (ε1, . . . , εk).

(c) The polynomial matrix

P (λ) :=

 Iqk

R · Z̃(λ)T ·R′


 Z(λ)

Iq̃m

 , (7.4)

where R and R′ are reverse identity matrices, is a completely singular polynomial matrix of degree d,
rank r, size (r+m)× (r+ k), with left minimal indices (η1, η2, . . . , ηm), and with right minimal indices
(ε1, ε2, . . . , εk).

Proof. (a) The first assumption in Lemma 7.5(ii) and the first equality in (7.3) are a particular case of the
assumptions (5.5) in Theorem 5.3 with (ε1, ε2, . . . , εk) replaced by (η1, η2, . . . , ηm). Therefore, Theorem 5.3

implies the existence and uniqueness of Z̃(λ) and Z̃♦(λ) with the sizes and row degrees stated in part (a).

(b) The proof is the same as the one of (a) by using the second assumption in Lemma 7.5(ii) and the
second equality in (7.3).

(c) Observe first that, from (7.3) and the assumption Lemma 7.5(i), we have d (q̃m+ qk) + (w̃m+wk) = dr,
which implies (w̃m +wk) = d(r− q̃m − qk), and so that w̃m +wk is a multiple of d. In fact, since 0 < w̃m < d
and 0 < wk < d,

w̃m + wk = d and q̃m + qk + 1 = r (7.5)

must hold. Therefore, the factors defining P (λ) in (7.4) have the sizes displayed in the next equation

A(λ) :=

 Iqk

R · Z̃(λ)T ·R′

 ∈ F[λ](r+m)×r , B(λ) :=

 Z(λ)

Iq̃m

 ∈ F[λ]r×(r+k), (7.6)
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and P (λ) has size (r+m)× (r+ k). Since any forward-zigzag matrix has full row rank, we see that A(λ) has
full column rank equal to r and that B(λ) has full row rank equal to r, and, as a consequence, the rank of
P (λ) is also r. Moreover, these rank properties imply that the null spaces of P (λ) over F(λ) satisfy

N`(P ) = N`(A) and Nr(P ) = Nr(B) ,

which in turn imply that the left minimal indices of P (λ) and A(λ) are equal, and that the right minimal
indices of P (λ) and B(λ) are equal. By using Lemma 2.6, we see that the right minimal indices of B(λ)
are those of Z(λ), which are (ε1, . . . , εk) by Corollary 4.10. The left minimal indices of A(λ) are the right

minimal indices of A(λ)T , which are those of R′ · Z̃(λ) ·R, by Lemma 2.6, which are those of Z̃(λ), since R′

and R are constant nonsingular matrices, that is, they are (η1, η2, . . . , ηm), again by Corollary 4.10. We have
established that P (λ) has left minimal indices (η1, η2, . . . , ηm) and right minimal indices (ε1, ε2, . . . , εk).

Next, we prove that the degree of P (λ) is d. For this purpose we partition R · Z̃(λ)T · R′ into its first
column and its remaining q̃m columns, and Z(λ) into its first qk rows and its last row. More precisely

R · Z̃(λ)T ·R′ =

[
X11(λ) X12(λ)

0 X22(λ)

]
and Z(λ) =

[
Z11(λ) Z12(λ)

0 Z22(λ)

]
, (7.7)

where X11(λ) =
[
λw̃m · · · 1

]T
and Z22(λ) =

[
1 · · · λwk

]
. Although it is not important in our

argument, note that the zigzag structures of Z(λ) and Z̃(λ) imply that the only nonzero entry in X12(λ) and
the only nonzero entry in Z12(λ) is, in both cases, λd placed in the lower-left corner. Inserting (7.7) into
(7.4), we get partitions of the factors defining P (λ) which are conformable for matrix multiplication:

P (λ) =

 Iqk 0 0
0 X11(λ) X12(λ)
0 0 X22(λ)

 Z11(λ) Z12(λ) 0
0 Z22(λ) 0
0 0 Iq̃m

 =

 Z11(λ) Z12(λ) 0
0 X11(λ)Z22(λ) X12(λ)
0 0 X22(λ)

 . (7.8)

Since,
[
Z11(λ) Z12(λ)

]
and

[
X12(λ)T X22(λ)T

]T
have both degree d (if they are not empty), and

X11(λ)Z22(λ) =

 λw̃m

...
1

 [ 1 · · · λwk
]

=

 λw̃m · · · λw̃m+wk

...
...

1 · · · λwk


has also degree d by (7.5), we see that P (λ) has indeed degree d.

It only remains to prove that the polynomial matrix P (λ) is completely singular. This follows immediately
from assumption Lemma 7.5(i) and the Index Sum Theorem (Theorem 2.13), since we have already proved that
P (λ) has degree d, rank r, left minimal indices (η1, η2, . . . , ηm), and right minimal indices (ε1, ε2, . . . , εk).

Observe that, as we commented in Remark 7.3, given the lists of prescribed positive left and right minimal
indices (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk) satisfying the assumptions of Lemma 7.5, parts (a), (b), (c), and

(d) in Theorem 5.3 allow us to very easily construct the forward-zigzag matrices Z̃(λ) and Z(λ) and, therefore,
the completely singular polynomial matrix P (λ) in (7.4), which has degree d and realizes these left and right

minimal indices. P (λ) inherits a very simple factorized structure from Z̃(λ) and Z(λ), and we can read off
the left and right minimal indices of P (λ) essentially by inspection of its factors via Lemma 4.4(b) applied

to Z̃(λ) and Z(λ), i.e., as the row degrees of the dual backward-zigzag matrices Z̃♦(λ) and Z♦(λ). Even
more, the proof of Lemma 7.5 shows us that the multiplied-out form of P (λ) in (7.8) is also very simple
and can be directly and explicitly constructed via Theorem 5.3. In addition, we can also read off the left
and right minimal indices of P (λ) by inspection of (7.8) since Z̃(λ) and Z(λ) are totally visible in (7.8): the

nonzero entries of the first column of R · Z̃(λ)T ·R′ form the first column of X11(λ)Z22(λ) and the nonzero
entries of the last row of Z(λ) form the last row of X11(λ)Z22(λ). Therefore, it is worth making explicit the
multiplied-out form (7.8) of P (λ) in the next corollary of Lemma 7.5.

Corollary 7.6. Let us consider the same assumptions and notation as in Lemma 7.5, and let us partition
the matrices R · Z̃(λ)T ·R′ and Z(λ) as follows:

R · Z̃(λ)T ·R′ =

[
X11(λ) X12(λ)

0 X22(λ)

]
and Z(λ) =

[
Z11(λ) Z12(λ)

0 Z22(λ)

]
,
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where X11(λ) has only one column and Z22(λ) has only one row and, in addition, they have the following

structures X11(λ) =
[
λw̃m · · · 1

]T
and Z22(λ) =

[
1 · · · λwk

]
. Then, the polynomial matrix P (λ)

in (7.4) can be written as

P (λ) =

 Z11(λ) Z12(λ) 0
0 X11(λ)Z22(λ) X12(λ)
0 0 X22(λ)

 , where X11(λ)Z22(λ) =

 λw̃m · · · λw̃m+wk

...
...

1 · · · λwk

 .

Example 7.7. To illustrate the construction of P (λ) in Lemma 7.5 and Corollary 7.6, we consider the lists
(η1, η2) = (3, 4) and (ε1, ε2, ε3, ε4) = (1, 2, 3, 2), take d = 5, and observe that for this example m = 2 and
k = 4. Note that

1∑
i=1

ηi = 3 = 5 · 0 + 3,

2∑
i=1

ηi = 7 = 5 · 1 + 2,

1∑
i=1

εi = 1 = 5 · 0 + 1,

2∑
i=1

εi = 3 = 5 · 0 + 3,

3∑
i=1

εi = 6 = 5 · 1 + 1,

4∑
i=1

εi = 8 = 5 · 1 + 3,

and
∑2
i=1 ηi +

∑4
i=1 εi = 15. Therefore, these lists satisfy the assumptions in Lemma 7.5 and we have the

following values for the parameters appearing in Lemma 7.5: r = 3, q̃2 = 1, and q4 = 1.
Theorem 5.3 applied to (η1, η2) allows us to construct the forward-zigzag matrix Z̃(λ) ∈ F[λ]2×4: the two

leading 1’s are in positions (1, 1) and (2, 2 + 1) = (2, 3); λ3 is in position (1, 1 + 1) = (1, 2); and λ2 is in
position (2, 2 + 2) = (2, 4). With this information, we get

Z̃(λ) =

[
1 λ3 λ5

1 λ2

]
and R · Z̃(λ)T ·R′ =


λ2

1 λ5

λ3

1

 ,
where we have indicated in R · Z̃(λ)T ·R′ the partition used in Corollary 7.6.

Theorem 5.3 applied to (ε1, ε2, ε3, ε4) allows us to construct the forward-zigzag matrix Z(λ) ∈ F[λ]2×6:
the two leading 1’s are in positions (1, 1) and (2, 2 + 2) = (2, 4); λ is in position (1, 1 + 1) = (1, 2); λ3 is in
position (1, 1 + 2) = (1, 3); λ is in position (2, 2 + 3) = (2, 5); and λ3 is in position (2, 2 + 4) = (2, 6). With
this information, we get

Z(λ) =

[
1 λ λ3 λ5

1 λ λ3

]
,

where we have indicated in Z(λ) the partition used in Corollary 7.6.

The factorized form of P (λ) in (7.4) follows immediately from R · Z̃(λ)T · R′ and Z(λ), and also the
multiplied-out form in Corollary 7.6, which is

P (λ) =


1 λ λ3 λ5

λ2 λ3 λ5

1 λ λ3 λ5

λ3

1

 .

Now, we are in position to state and prove our final realizability result for completely singular polynomial
matrices with prescribed degree, which is Theorem 7.8. In this result, we assume without loss of generality
that zero terms, if any, in the prescribed lists of minimal indices are placed in the initial positions. Also, we
assume implicitly that there is at least one positive minimal index, since otherwise the lists of minimal indices
can be trivially realized with constant matrices of infinitely many different sizes, and cannot be realized with
polynomials of any degree larger than or equal to 1. Except for this, the only assumption in Theorem 7.8 is
that the prescribed minimal indices satisfy the Index Sum Theorem.

Theorem 7.8. Let (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk) be two lists of nonnegative integers, and d another
positive integer such that

m∑
i=1

ηi +

k∑
j=1

εj = d r, (7.9)
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for a positive integer r. Let the lists (η1, η2, . . . , ηm) and (ε1, ε2, . . . , εk) be ordered so that

0 = η1 = · · · = ηm0 , 0 < ηi if m0 < i and 0 = ε1 = · · · = εk0 , 0 < εj if k0 < j .

Define the sets

{m1, . . . ,ms} =

{
α : m0 < α ≤ m and d is a divisor of

α∑
i=1

ηi

}
,

{k1, . . . , kt} =

{
β : k0 < β ≤ k and d is a divisor of

β∑
i=1

εi

}
,

where m1 < · · · < ms and k1 < · · · < kt, and define the sequences of integers

r̃j =
ηmj−1+1 + · · ·+ ηmj

d
, for j = 1, . . . , s, and rj =

εkj−1+1 + · · ·+ εkj
d

, for j = 1, . . . , t .

Then:

(a) For each j = 1, . . . , s, there exists a unique forward-zigzag matrix Z̃j(λ) ∈ F[λ]r̃j×(r̃j+mj−mj−1) with
row degrees all equal to d, such that its dual backward-zigzag matrix has row degrees (ηmj−1+1, . . . , ηmj

).

(b) For each j = 1, . . . , t, there exists a unique forward-zigzag matrix Zj(λ) ∈ F[λ]rj×(rj+kj−kj−1) with row
degrees all equal to d, such that its dual backward-zigzag matrix has row degrees (εkj−1+1, . . . , εkj ).

(c) If ms 6= m (or equivalently if kt 6= k), then there exists a completely singular polynomial matrix Q(λ) of
degree d, with left minimal indices (ηms+1, . . . , ηm), and with right minimal indices (εkt+1, . . . , εk). In
addition, Q(λ) can be constructed by applying Lemma 7.5 to the lists (ηms+1, . . . , ηm) and (εkt+1, . . . , εk).

(d) The polynomial matrix

P (λ) =



0m0×k0
Z1(λ)

. . .

Zt(λ)
Q(λ)

R(1) · Z̃1(λ)T ·R′(1)
. . .

R(s) · Z̃s(λ)T ·R′(s)


,

where R(i) and R′(i) are reverse identity matrices for i = 1, . . . , s, is a completely singular polynomial
matrix of degree d, rank r, size (r +m)× (r + k), with left minimal indices (η1, η2, . . . , ηm), and right
minimal indices (ε1, ε2, . . . , εk).

Proof. (a) Since
∑mj

i=1 ηi and
∑mj−1

i=1 ηi are multiples of d, we have that ηmj−1+1 + · · · + ηmj
=
∑mj

i=1 ηi −∑mj−1

i=1 ηi is also a multiple of d. Besides, observe that ηmj−1+1 + · · · + ηα is not a multiple of d for any
α = mj−1 + 1, . . . ,mj −1, because otherwise the set {m1, . . . ,ms} would have additional elements. Therefore,

the list (ηmj−1+1, . . . , ηmj
) satisfies (7.2) and Lemma 7.1 guarantees the existence and uniqueness of Z̃j(λ).

(b) The proof is completely analogous to the one of (a).

(c) ms 6= m if and only if kt 6= k, because from the definitions of ms and kt and (7.9) we get that ms = m

implies that
∑k
j=1 εj is a multiple of d and, so, kt = k, and also that kt = k implies that

∑m
i=1 ηi is a multiple

of d and, so, ms = m. Therefore, if ms 6= m, we get from (7.9)

m∑
i=ms+1

ηi +

k∑
j=kt+1

εj = d rmix,

for an integer rmix. In addition,
∑α
i=ms+1 ηi and

∑β
j=kt+1 εj are not multiples of d for α = ms+1, . . . ,m and

β = kt + 1, . . . , k, because otherwise the sets {m1, . . . ,ms} and {k1, . . . , kt} would have additional elements.
Therefore, the lists (ηms+1, . . . , ηm) and (εkt+1, . . . , εk) satisfy the assumptions Lemma 7.5(i)-(ii) and Lemma
7.5 implies the existence of Q(λ).
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(d) Lemma 2.8, Corollary 4.10, and the properties of Z1(λ), . . . , Zt(λ), Q(λ), Z̃1(λ)T , . . . , Z̃s(λ)T imply
that P (λ) has degree d, is completely singular, has left minimal indices (η1, η2, . . . , ηm), and has right minimal

indices (ε1, ε2, . . . , εk). Observe that Z̃i(λ)T and R(i) · Z̃i(λ)T · R′(i) have the same minimal indices (and
elementary divisors, i.e., none) for i = 1, . . . , s. The fact that the rank of P (λ) is r follows from the Index
Sum Theorem (Theorem 2.13) and (7.9), and its size is (r+m)× (r+ k) as a consequence of the rank-nullity
theorem applied to the dimensions of the left and right null spaces of P (λ).

Remark 7.9. Observe that the blocks R(i) · Z̃i(λ)T ·R′(i) in the polynomial matrix P (λ) in Theorem 7.8(d)

can be replaced by Z̃i(λ)T for i = 1, . . . , s, without changing any of the properties proved for P (λ). This
second option is commonly used in the literature in the description of the Kronecker canonical form of pencils
[8]. However, the use of R(i) · Z̃i(λ)T ·R′(i) might have advantages in proving structured versions of Theorem
7.8 for structured matrix polynomials and, moreover, it is coherent with the factorized form of the block
Q(λ), in the middle of P (λ), presented in Lemma 7.5(c). Note that in Lemma 7.5 the use of reverse identity
matrices is needed to construct a polynomial with the right degree.

Example 7.10. We illustrate Theorem 7.8 by realizing the prescribed lists (η1, η2, η3, η4) = (0, 5, 3, 4) and
(ε1, ε2, ε3, ε4, ε5, ε6) = (6, 4, 1, 2, 3, 2) of left and right minimal indices with a completely singular polynomial
of degree d = 5. Observe that

4∑
i=1

ηi +

6∑
j=1

εj = 30,

and, so, r = 6. The key parameters in Theorem 7.8 are m0 = 1, k0 = 0, s = 1 and m1 = 2, and t = 1 and k1 = 2.
Therefore, we have to realize independently the lists (η2) = (5) of one left minimal index, (ε1, ε2) = (6, 4) of
two right minimal indices, and jointly the lists (η3, η4) = (3, 4) and (ε3, ε4, ε5, ε6) = (1, 2, 3, 2). Observe that
(η3, η4) and (ε3, ε4, ε5, ε6) were already realized in Example 7.7.

The list (η2) = (5) is immediately realized by Z̃1(λ) =
[

1 λ5
]
, although the reader is invited to check

that the procedure in Theorem 5.3 also produces this forward-zigzag matrix.
For the list (ε1, ε2) = (6, 4), we have

1∑
i=1

εi = 6 = 5 · 1 + 1,

2∑
i=1

εi = 10 = 5 · 1 + 5 .

So in Theorem 5.3, q1 = 1, w1 = 1, q2 = 1, w2 = 5, which implies that Z(λ) has size 2× 4. The positions
of the leading 1s are (1, 1) and (2, 2 + 0) = (2, 2), the position of λ is (2, 3), and the position of λ5 is (2, 4).
With this information, we get

Z1(λ) =

[
1 λ5

1 λ λ5

]
.

Finally we gather all these matrices together in the desired P (λ):

P (λ) =



0

1 λ5

1 λ λ5

1 λ λ3 λ5

λ2 λ3 λ5

1 λ λ3 λ5

λ3

1

λ5

1


.

Remark 7.11. The polynomial P (λ) in Theorem 7.8(d) can be factored as a product of a full column rank
polynomial matrix times a full row rank polynomial matrix of sizes (r +m)× r and r × (r + k), respectively,
and such that the left minimal indices of the first factor are the left minimal indices of P (λ) and the right
minimal indices of the second factor are the right minimal indices of P (λ). Such a factorization follows from
factoring the polynomial Q(λ) in the middle of the block diagonal of P (λ) according to (7.4) in Lemma

7.5. If Z̃(λ) and Z(λ) are the forward-zigzag matrices involved in the factorization of Q(λ), and we define
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B(λ) = Z1(λ)⊕ · · · ⊕Zt(λ)⊕Z(λ) and A(λ) = (R′ · Z̃(λ) ·R)⊕R′(1) · Z̃1(λ) ·R(1) ⊕ · · · ⊕R′(s) · Z̃s(λ) ·R(s),
then

P (λ) =

 0m0×r
I 0
0 A(λ)T

 [ 0r×k0
B(λ) 0

0 I

]
,

where the index of the first column of A(λ)T is the index of the last row of B(λ).

8 Conclusions

We have introduced the new class of polynomial zigzag matrices, and employed them to solve the inverse
row degree problem for dual minimal bases in its most general form; equivalently, we have solved the inverse
minimal index problem for dual rational subspaces. To the best of our knowledge, this problem is settled
for the first time in this paper, with a solution that is both constructive and simple. In addition, we have
shown how to use zigzag matrices to explicitly and easily construct completely singular polynomial matrices
with any desired degree d and arbitrarily prescribed left and right minimal indices, provided only that d
divides the sum of all of the prescribed minimal indices. A key feature of this approach is that the minimal
indices are immediately apparent by inspection from the constructed polynomial matrix. This result therefore
complements the solution of the more general inverse problem given recently in [5], which is based on a rather
complicated construction that does not display the realized structure at all. It also opens up the possibility
that it may be feasible to realize a prescribed degree, minimal index list, and elementary divisor collection
with a polynomial matrix that immediately displays the complete eigenstructure, or at least a significant
part of it; this remains an open question. We believe that zigzag matrices will continue to be a useful tool in
many other problems involving polynomial matrices; indeed, we are presently working on several research
problems in which they play a key role.
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