
Fernando
De Terán Vergara
Catedrático de Universidad (Matemática Aplicada)
Full Professor of Applied Mathematics
Universidad Carlos III de Madrid
Departamento de Matemáticas
Avenida de la Universidad, 30
28911, Leganés, Madrid.
Teléfono: 91 624 9977
FAX: +34 91 624 9151
Despacho: 2.2.A.13 (Edificio Sabatini)
Catedrático de Universidad (Matemática Aplicada)
Full Professor of Applied Mathematics
Universidad Carlos III de Madrid
Departamento de Matemáticas
Avenida de la Universidad, 30
28911, Leganés, Madrid.
Teléfono: 91 624 9977
FAX: +34 91 624 9151
Despacho: 2.2.A.13 (Edificio Sabatini)
Scientific
Publications
PhD. Dissertation
Problemas de perturbación de objetos espectrales discontinuos en haces matriciales, Universidad Carlos III de Madrid, Leganés, Dec 2007.
Papers in JCR JournalsOn bundle closures of matrix pencils and matrix polynomials.
F. De Terán, F. M. Dopico, V. Koval, and P. Pagacz. Ann. Sc. Norm. Super. Pisa, Cl.Sci. In press. arXiv version
Even grade generic skew-symmetric matrix polynomials
with bounded rank.
F. De Terán, A. Dmytryshyn, and F. M. Dopico. Linear Algebra Appl. 702 (2024) 218-239. arXiv
version
Generic eigenstructure of
Hermitian pencils.
F. De Terán, A. Dmytryshyn, and F. M. Dopico. SIAM J. Matrix Anal. Appl. 45 (2024) 260-283. arXiv version
On the consistency of the
matrix equation X^TAX=B when B is
skew-symmetric: improving the previous
characterization.
A. Borobia, R. Canogar, and F. De
Terán. Lin. Multilin. Algebra 73(9) (2025) 1820-1846.
On the consistency of the matrix equation X^T
A X=B when B is symmetric: the case where CFC(A)
includes skew-symmetric blocks.
A. Borobia, R. Canogar, and F. De Terán. RACSAM, 117 (2023) Article number: 61.
On bundles of matrix pencils under strict
equivalence. F. De Terán and F. M. Dopico.
Linear Algebra Appl. 658 (2023) 1-31.
Frequency
isolation for gyroscopic systems via hyperbolic
quadratic eigenvalue problems.
J. Moro, S. Miodragovic, F. De Terán, and N. Truhar.
Mech. Syst. Signal Process. 184 (2023) 109688.
The equation X^T AX=B with B skew-symmetric:
How much of a bilinear form is skew-symmetric?.
A. Borobia, R. Canogar, and F. De Terán. Lin.
Multilin. Algebra 71, no. 13 (2023) 2114-2143.
Low
rank perturbation of regular matrix pencils with
symmetry structures. F.
De Terán, C. Mehl, and V. Mehrmann. Found.
Comput. Math. 22 (2022) 257-311.
https://doi.org/10.1007/s10208-021-09500-4
Structured
strong l-ifications for structured matrix
polynomials in the monomial basis.
F. De Terán, C. Hernando, and J. Pérez. Electron.
J. Linear Algebra 37
(2021) 35-71.
On
the consistency of the matrix equation X^TAX=B
when B is symmetric.
A. Borobia, R. Canogar, and F. De Terán. Mediterr.
J. Math (2021) 18:40 (electronic) .
https://doi.org/10.1007/s00009-020-01656-7
Generic
symmetric matrix polynomials with bounded rank and
fixed odd grade. F.
De Terán, A. Dmytryshyn, and F. M. Dopico.
SIAM J. Matrix Anal. Appl. 41 (2020) 1033-1058. arXiv
version.
A
note on generalized companion pencils. F.
De Terán and C. Hernando. RACSAM 114 (2020)
Article number: 8 (electronic).
Backward
error and conditioning of Fiedler linearizations.
F. De Terán. Math.
Comp. 89 , nr. 323 (2020) 1259-1300.
Generic
symmetric matrix pencils with bounded rank.
F. De Terán, A.
Dmytryshyn, and F. M. Dopico. J.
Spectr. Theor. 10 (2020) 905-926.
Nonsingular
systems of generalized Sylvester equations:
an algorithmic approach.
F. De Terán, B. Iannazzo, F. Poloni, and
L. Robol.
Numer. Lin. Alg. Appl. 26
(2019) e2261 (29 pages). Arxiv
version.
Quadratic
realizability of palindromic matrix
polynomials F.
De Terán, F. M. Dopico, D. S.
Mackey, and V. Perovic.
Linear Algebra Appl.
567 (2019) 202-262.
Also available as MIMS Eprint 2017.37.
A
geometric description of the sets
of palindromic and alternating
matrix pencils with bounded rank.
F. De Terán.
SIAM J. Matrix Anal. Appl. 39
(2018) 1116-1134.
Solvability
and uniqueness criteria
for generalized
Sylvester-type equations.
F.
De Terán, B. Iannazzo, F.
Poloni, and L. Robol.
Linear
Algebra Appl. 542 (2018)
501-521.
See also:
Corrigendum to "Solvability and uniqueness criteria for generalized Sylvester-type equations". F. De Terán, B. Iannazzo, F. Poloni, and L. Robol. Linear Algebra Appl. 542 (2018) 522-526.
An
explicit description of
the irreducible
components of the set of
matrix pencils with
bounded normal rank.
F.
De Terán, F. M. Dopico, and
J. M. Landsberg.
Linear
Algebra Appl.
520
(2017) 80-103.
Eigenvalue condition
number and pseudospectra
of
Fiedler matrices.
F.
De
Terán, F. M. Dopico, and
J. Pérez. Calcolo
54 (2017) 319-365.
Generic
change
of the partial
multiplicities of regular
matrix pencils under low
rank
perturbations.
F. De Terán and
F. M. Dopico. SIAM
J.
Matrix Anal. Appl. 37
(2016) 823-835.
Constructing
strong
l-ifications
from dual
minimal
bases. F.
De Terán, F.
M.
Dopico, and P.
Van Dooren.
Linear Algebra
Appl
495 (2016)
344-372.
Uniqueness of
solution of a
generalized
*-Sylvester matrix
equation. F.
De Terán and B.
Iannazzo.
Linear Algebra
Appl. 493 (2016)
323-335.
Polynomial zigzag
matrices, dual
minimal bases, and
the realization of
completely
singular
polynomials. F.
De
Terán, F. M.
Dopico, D. S.
Mackey, and P. Van
Dooren.
Linear Algebra
Appl. 488
(2016) 460-504.
Also available as
MIMS Eprint 2015.7
Backward stability
of polynomial
root-finding
using
Fiedler
companion
matrices.
F.
De Terán, F.
M. Dopico, and
J. Pérez.
IMA
J.
Numer. Anal.,
36 (2016)
133-173.
Matrix polynomials
with
completely
prescribed
eigenstructure.
F. De Terán,
F. M. Dopico,
and P. Van
Dooren. SIAM
J. Matrix
Anal. Appl.
36 (1) (2015)
302-328.
Spectral equivalence
of matrix
polynomials
and the Index
Sum theorem. F.
De
Terán, F. M.
Dopico, and D.
S. Mackey.
Linear Algebra
Appl. 459
(2014) 264-333 .
Also available
as
MIMS EPrint
2013.47.
New bounds
for roots of
polynomials
based on
Fiedler
companion
matrices.
F.
De Terán, F.
M. Dopico, and
J. Pérez.
Linear Algebra
Appl. 451
(2014)
197-230.
Flanders' theorem
for many
matrices under
commutativity
assumptions. F.
De Terán,
R. Lippert, Y.
Nakatsukasa,
and V.
Noferini.
Linear
Algebra
Appl. 443
(2014) 120-138 .
Also available
as
MIMS EPrint
2013.20
Eigenvectors and
minimal bases
for some
families of
Fiedler-like
linearizations.
M. I. Bueno
and F. De
Terán.
Lin. Multilin.
Algebra 62,
no.1 (2014)
39-62.
The solution
of the
equation
AX+BX*=0.
F. De Terán.
Lin. Multilin.
Algebra
61, no. 12
(2013)
1605-1628.
The solution
of the
equation
AX+X*B=0.
F. De Terán,
F. M. Dopico,
N. Guillery,
D.
Montealegre,
and N. Reyes.
Linear Algebra
Appl. 438
(2013)
2817-2860.
Condition
numbers for
inversion of
Fiedler
companion
matrices.
F.
De Terán, F.
M.
Dopico, and J.
Pérez.
Linear Algebra
Appl. 439
(2013)
944-981.
Fiedler companion
linearizations
for
rectangular
matrix
polynomials.
F.
De
Terán, F. M.
Dopico, and D.
S. Mackey.
Linear Algebra
Appl. 437
(2012)
957-991.
Palindromic
companion
forms for
matrix
polynomials of
odd degree.
F. De
Terán, F. M.
Dopico, and D.
S. Mackey. J.
Comput. Appl.
Math. 236
(2011)
1464-1480.
Consistency and
efficient
solution for
the Sylvester
equation for
*congruence:
AX+X*B=C.
F.
De Terán and
F. M.
Dopico.
Electron.
J. Linear
Algebra 22
(2011)
849-863.
Recovery of
eigenvectors
and minimal
bases of
matrix
polynomials
from
generalized
Fiedler
linearizations.
M.
I. Bueno, F.
De Terán, and
F.
M. Dopico.
SIAM J. Matrix
Anal. Appl.
32 (2011)
463-483.
On the
perturbation
of singular
analytic
matrix
functions: A
generalization
of
Langer and
Najman's
results.
F.
De Terán.
Oper.
Matrices 5
no. 4
(2011)
553-564.
The
equation
XA+AX*=0 and
the
codimension of
*congruence
orbits. F.
De Terán
and F. M.
Dopico. Electron.
J. Linear
Algebra 22
(2011)
448-465.
The solution
of the
equation XA +
AX^T = 0 and
its
application to
the theory of
orbits. F.
De Terán and
F. M.
Dopico.
Linear Algebra
Appl. 434
(2011) 44-67.
Fiedler companion
linearizations
and the
recovery of
minimal
indices.
F. De Terán,
F. M. Dopico,
and D. S.
Mackey.
SIAM
J. Matrix
Anal.
Appl. 31
(2010)
2181-2204.
First order spectral
perturbation
theory of
square
singular
matrix
polynomials.
F.
De Terán and
F. M. Dopico.
Linear Algebra
Appl. 432
(2010)
892-910.
Linearizations of
singular
matrix
polynomials
and the
recovery of
minimal
indices.
F.
De Terán, F.
M. Dopico, and
D.
S. Mackey.
Electron. J.
Linear
Algebra 18
(2009)
371-402.
Low rank
perturbation
of regular
matrix
polynomials.
F.
De Terán and
F. M. Dopico.
Linear Algebra
Appl. 430
(2009)
579-586.
Sharp lower
bounds for the
dimension of
linearizations
of matrix
polynomials.
F.
De Terán and
F. M. Dopico.
Electron. J.
Linear
Algebra 17
(2008)
518-531.
First order spectral
perturbation
theory of
square
singular
matrix pencils.
F.
De Terán, F.
M. Dopico, and
J. Moro.
Linear Algebra
Appl. 429
(2008)
548-576.
Low rank perturbation
of Weierstrass
structure.
F.
De Terán, F.
M. Dopico, and
J. Moro.
SIAM J. Matrix
Anal. Appl.
30 no. 2
(2008)
538-547.
A
note on
generic
Kronecker
orbits of
matrix pencils
with fixed
rank. F.
De Terán and
F. M. Dopico.
SIAM J. Matrix
Anal. Appl.
30 no. 2
(2008) 491-496.
Low
rank
perturbation
of Kronecker
structures
without full
rank.
F.
De Terán and
F. M. Dopico.
SIAM J. Matrix
Anal. Appl.
29 no. 2
(2007)
496-529.
Papers
in other journals and book chapters.
(Please note that most of these versions are preprints, so the content may differ from the published version.)
Preprints and Proceedings
Problemas de perturbación de objetos espectrales discontinuos en haces matriciales, Universidad Carlos III de Madrid, Leganés, Dec 2007.
Papers in JCR Journals
- Uniqueness of solution of systems of generalized Sylvester and conjugate-Sylvester equations. F. De Terán and B. Iannazzo. Linear Algebra Appl. 734 (2026) 176-192.
- On the dimension of orbits of matrix pencils under strict equivalence. F. De Terán, F. M. Dopico, P. Pagacz. Appl. Math. Letters. 172 (Jan 2026) 109695.
- Solvability and uniqueness of solution of generalized *-Sylvester equations with arbitrary coefficients. F. De Terán and B. Iannazzo. J. London Math. Soc. 111 (3) e70129 (March 2025).
https://doi.org/10.1007/s10208-021-09500-4
Also available as MIMS Eprint 2017.37.
See also:
Corrigendum to "Solvability and uniqueness criteria for generalized Sylvester-type equations". F. De Terán, B. Iannazzo, F. Poloni, and L. Robol. Linear Algebra Appl. 542 (2018) 522-526.
-
A
class of quasi-sparse companion pencils.
F. De Terán
and C. Hernando. In:
Structured Matrices in Numerical
Linear Algebra: Analysis, Algorithms and
Applications, Bini, D.A. Di
Benedetto, F. Tyrtyshnikov, E. Van Barel, M.
(Eds.). INdAM series,
Springer (2018)157-179.
-
Canonical
forms for
congruence of matrices: a tribute
to H. W. Turnbull and A. C. Aitken.
F.
De Terán.
SeMA Journal, 73 (2016) 7-16.
(Please note that most of these versions are preprints, so the content may differ from the published version.)
Preprints and Proceedings
- Generic real Jordan canonical forms. F. De Terán and F. M. Dopico. Submitted. arXiv version
- The generic canonical form for *congruence of matrices. F. De Terán and F. M. Dopico. Submitted. arXiv version
- The dimension of orbits and bundles of Hermitian pencils under *-congruence F. De Terán and D. Zhang. Submitted.
- Real-congruence canonical forms of real matrices. F. De Terán and F. M. Dopico. Submitted. arXiv version
- On the consistency of the matrix equation X*AX=B, with B being Hermitian or skew-Hermitian. A. Borobia, R. Canogar, and F. De Terán. Submitted.
- A note on the consistency of a system of *-Sylvester equations. F. De Terán. arXiv: 1411.0420
- Canonical forms for congruence of matrices: a tribute to H. W. Turnbull and A. C. Aitken. F. De Terán. Actas del II congreso de la red ALAMA, Valencia, 2-4 june, 2010.
- Linearizations of matrix polynomials: Sharp lower bounds for the dimension and structures. F. De Terán, F. M. Dopico, and D. S. Mackey. Actas del XXI Congreso de ecuaciones diferenciales y aplicaciones (CEDYA) XI Congreso de matemática aplicada, Ciudad Real, 21-25 sept. 2009.


