Froilán Martínez Dopico
Catedrático de Universidad
Área de Matemática Aplicada

Universidad Carlos III de Madrid
Departamento de Matemáticas
Avenida de la Universidad, 30
28911, Leganés, Madrid.

Teléfono: +34 91 624 9446
FAX: +34 91 624 9129
Despacho: 2.2.D.25 (Edificio Sabatini)
Scientific Publications

Papers in journals indexed in Journal Citation Reports (JCR) of Web of Science (Thomson Reuters)

  1. F. Dopico, V. Noferini, M.C. Quintana, and P. Van Dooren, Para-Hermitian rational matrices, to appear in SIAM Journal on Matrix Analysis and Applications (arXiv:2407.13563).
  2. F. Dopico, V. Noferini, and I. Zaballa, Rosenbrock's theorem on system matrices over elementary divisor domains, submitted (arXiv:2406.18218).
  3. F. De Terán, F.M. Dopico, V. Koval, and P. Pagacz, On bundle closures of matrix pencils and matrix polynomials, submitted (arXiv:2402.16702).
  4. F. De Terán, A. Dmytryshyn, and F.M. Dopico, Even grade generic skew-symmetric matrix polynomials with bounded rank, Linear Algebra and its Applications, 702 (2024), pp. 218-239 (arXiv:2312.16672).
  5. A. Dmytryshyn, F. Dopico, and P. Van Dooren, Minimal rank factorizations of polynomial matrices, submitted (arXiv:2312.00676).
  6. F. Dopico, V. Noferini, and L. Nyman, A Riemannian optimization method to compute the nearest singular pencil, SIAM Journal on Matrix Analysis and Applications, 45 (2024), pp. 2007-2038 (arXiv:2308.12781).
  7. F.M. Dopico and V. Noferini, The DL(P) vector space of pencils for singular matrix polynomials, Linear Algebra and its Applications, 677 (2023), pp. 88-131 (arXiv:2212.08212).
  8. F.M. Dopico, S. Marcaida, M.C. Quintana, and P. Van Dooren, Linearizations of matrix polynomials viewed as Rosenbrock's system matrices, Linear Algebra and its Applications, 693 (2024), pp. 116-139  (arXiv:2211.09056).
  9. F. De Terán, A. Dmytryshyn, and F.M. Dopico, Generic eigenstructures of Hermitian pencils, SIAM Journal on Matrix Analysis and Applications, 45 (2024), pp. 260-283 (arXiv:2209.10495).
  10. F. De Terán and F.M. Dopico, On bundles of matrix pencils under strict equivalence, Linear Algebra and its Applications, 658 (2023), pp. 1-31 (arXiv:2204.10237).
  11. L.M. Anguas, F.M. Dopico, R. Hollister, and D.S. Mackey, Quasi-triangularization of matrix polynomials over arbitrary fields, Linear Algebra and its Applications, 665 (2023), pp. 61-106 (arXiv:2112.08229).
  12. F.M. Dopico, M.C. Quintana, and P. Van Dooren, Strongly minimal self-conjugate linearizations for polynomial and rational matrices, SIAM Journal on Matrix Analysis and Applications, 43 (2022), pp. 1354-1381 (arXiv:2110.12470).
  13. F.M. Dopico, M.C. Quintana, and P. Van Dooren, Structural backward stability in rational eigenvalue problems solved via block Kronecker linearizations, Calcolo 60 (2023) 7 (pp. 1-45) (arXiv:2103.16395).
  14. F.M. Dopico, S. Marcaida, M.C. Quintana, and P. Van Dooren, Block full rank linearizations of rational matrices, Linear and Multilinear Algebra, 71 (2023),  pp. 391-421. (arXiv:2011.00955)
  15. F.M. Dopico, M.C. Quintana, and P. Van Dooren, Diagonal scalings for the eigenstructure of arbitrary pencils, SIAM Journal on Matrix Analysis and Applications, 43 (2022), pp. 1213-1237. (arXiv:2009.00482). See also the supplementary materials accompanying this paper.
  16. A. Amparan, F.M. Dopico, S. Marcaida, I. Zaballa, On minimal bases and indices of rational matrices and their linearizations, Linear Algebra and its Applications, 623 (2021), pp. 14-67  (arXiv:1912.12293).
  17. F. De Terán, A. Dmytryshyn, and F.M. Dopico, Generic symmetric matrix polynomials with bounded rank and fixed odd grade, SIAM Journal on Matrix Analysis and Applications, 41 (2020), pp. 1033-1058. (arXiv:1911.01408)
  18. F.M. Dopico, S. Marcaida, M.C. Quintana, and P. Van Dooren, Local linearizations of rational matrices with application to rational approximations of nonlinear eigenvalue problems, Linear Algebra and its Applications, 604 (2020), pp. 441-475.  (arXiv:1907.10972)
  19. L.M. Anguas, M.I. Bueno, and F.M. Dopico, Conditioning and backward errors of eigenvalues of homogeneous matrix polynomials under Möbius transformations, Mathematics of Computation, 89 (2020), pp. 767-805 (arXiv:1810.11495).
  20. F.M. Dopico and V. Noferini, Root polynomials and their role in the theory of matrix polynomials, Linear Algebra and its Applications, 584 (2020), pp. 37-78.
  21. F. De Terán, A. Dmytryshyn, and  F.M. Dopico, Generic symmetric matrix pencils with bounded rank, Journal of Spectral Theory, 10 (2020), pp. 905-926. (arXiv:1808.03118).
  22. F.M. Dopico, S. Marcaida, and M.C. Quintana, Strong linearizations of rational matrices with polynomial part expressed in an orthogonal basis, Linear Algebra and its Applications, 570 (2019), pp. 1-45.  (arXiv:1806.10544).
  23. L.M. Anguas, M.I. Bueno, and F.M. Dopico, A comparison of eigenvalue condition numbers for matrix polynomials, Linear Algebra and its Applications, 564 (2019), pp. 170-200. (arXiv:1804.09825).
  24. F.M. Dopico, J. Pérez, and  P. Van Dooren, Block minimal bases l-ifications of matrix polynomials, Linear Algebra and its Applications, 562 (2019), pp. 163-204  (arXiv:1803.06306).
  25. L.M. Anguas, F.M. Dopico, R. Hollister, and D.S. Mackey, Van Dooren's index sum theorem and rational matrices with prescribed structural data, SIAM Journal on Matrix Analysis and Applications, 40 (2019), pp. 720-738. Available as MIMS EPrint: 2018.6 of The University of  Manchester.
  26. F.M. Dopico and P. Van Dooren, Robustness and perturbations of minimal bases II: The case with given row degrees, Linear Algebra and its Applications, 576 (2019), pp. 268-300  (arXiv:1712.03816).
  27. F. De Terán, F.M. Dopico, D.S. Mackey, and  V. Perovic, Quadratic realizability of palindromic matrix polynomials, Linear Algebra and its Applications, 567 (2019), pp. 202-262. Available as MIMS-eprint 2017.37 of The University of Manchester.
  28. M.I. Bueno, F.M. Dopico, S. Furtado, and L. Medina, A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error, Calcolo, 55 (2018), 32:1-32:43. 
  29. F.M. Dopico and J. González-Pizarro, A compact rational Krylov method for large-scale rational eigenvalue problems,  Numerical Linear Algebra with Applications, 26 (e2214) (2019), pp. 1-26.  (arXiv:1705.06982).
  30. A. Dmytryshyn and F.M. Dopico, Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade, Linear Algebra and its Applications, 536 (2018), pp. 1-18. (arXiv:1703.05797).
  31. F.M.  Dopico, J. Pérez, and P. Van Dooren, Structured backward error analysys of linearized structured polynomial eigenvalue problems,  Mathematics of Computation, 88 (2019), pp. 1189-1228.  (arXiv:1612.07011v1).
  32. P. Van Dooren and F.M. Dopico, Robustness and perturbations of minimal bases, Linear Algebra and its Applications, 542 (2018), pp. 246-281. (arXiv: 1612.03793).
  33. A. Dmytryshyn and F.M. Dopico, Generic complete eigestructures for sets of matrix polynomials with bounded rank and degree, Linear Algebra and its Applications, 535 (2017), pp. 213-230. (arXiv: 1612.04085).
  34. M. I. Bueno, F. M. Dopico, J. Pérez, R. Saavedra, and B. Zykoski, A simplified approach to Fiedler-like pencils via block minimal bases pencils, Linear Algebra and its Applications, 547 (2018), pp. 45-104. (arXiv:1611.07170v1).
  35. A. Amparan, F.M. Dopico, S. Marcaida, and I. Zaballa, Strong linearizations of rational matrices, SIAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 1670-1700. Available as MIMS-eprint 2016.51 of The University of Manchester.
  36. F. De Terán, F.M. Dopico, and J.M. Landsberg, An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank, Linear Algebra and its Applications, 520 (2017), pp. 80-103. (arXiv:1606.02574)
  37. F.M. Dopico, P.W. Lawrence, J. Pérez, and P. Van Dooren, Block Kronecker linearizations of matrix polynomials and their backward errors, Numerische Mathematik, 140 (2018), pp. 373-426. Extended version available as MIMS-eprint 2016.34 of The University of Manchester.
  38. F.M. Dopico and K. Pomés, Structured condition numbers for linear systems with parameterized quasiseparable coefficient matrices, Numerical Algorithms, 73 (2016), pp. 1131-1158  (DOI 10.1007/s11075-016-0133-8).
  39. N. Castro-González, F.M. Dopico, and J.M. Molera, Multiplicative perturbation theory of the Moore-Penrose inverse and the least squares problem, Linear Algebra and its Applications, 503 (2016), pp. 1-25.
  40. F. De Terán, F.M. Dopico, and J. Pérez, Eigenvalue condition numbers and pseudospectra of Fiedler matrices, Calcolo, 54 (2017), pp. 319-365. (DOI 10.1007/s10092-016-0189-9).
  41. B. Parlett, F. M. Dopico, and C. Ferreira, The inverse eigenvector problem for real tridiagonal matrices, SIAM Journal on Matrix Analysis and Applications, 37 (2016), pp. 577-597.
  42. F. De Terán and F. M. Dopico, Generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations, SIAM Journal on Matrix Analysis and Applications, 37 (2016), pp. 823-835.
  43. F. M. Dopico and K. Pomés,  Structured eigenvalue condition numbers for parameterized quasiseparable matrices, Numerische Mathematik, 134 (2016), pp. 473–512 (DOI 10.1007/s00211-015-0779-5).
  44. F. De Terán, F. M. Dopico, and P. Van Dooren, Constructing strong l-ifications from dual minimal bases, Linear Algebra and its Applications, 495 (2016), pp. 344-372.
  45. F. De Terán, F. M. Dopico, D. S. Mackey, and P. Van Dooren, Polynomial zigzag matrices, dual minimal bases, and the realization of completely singular polynomials, Linear Algebra and its Applications, 488 (2016), pp. 460-504.
  46. M. I. Bueno, F. M. Dopico, and S. Furtado, Linearizations of Hermitian matrix polynomials preserving the sign characteristic, SIAM Journal on Matrix Analysis and Applications, 38 (2017), pp. 249-272.
  47. M. I. Bueno, F. M. Dopico, S. Furtado, and M. Rychnovsky, Large vector spaces of block-symmetric strong linearizations of matrix polynomials, Linear Algebra and its Applications, 477 (2015), pp. 165-210.
  48. F. M. Dopico, J. González, D. Kressner, and V. Simoncini, Projection methods for large-scale T-Sylvester equations, Mathematics of Computation, 85 (2016), pp. 2427-2455.
  49. F. De Terán, F. M. Dopico, and P. Van Dooren, Matrix polynomials with completely prescribed eigenstructure, SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 302-328.
  50. F. De Terán, F. M. Dopico, and J. Pérez, Backward stability of polynomial root-finding using Fiedler companion matrices, IMA Journal of Numerical Analysis, 36 (2016), pp. 133-173. 
  51. F. M. Dopico and F. Uhlig, Computing matrix symmetrizers, Part 2: new methods using eigendata and linear means; a comparison, Linear Algebra and its Applications, 504 (2016), pp. 590-622. 
  52. M. Dailey, F. M. Dopico, and Q. Ye, Relative perturbation theory for diagonally dominant matrices, SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 1303-1328.
  53. M. Dailey, F. M. Dopico, and Q. Ye, A new perturbation bound for the LDU factorization of diagonally dominant matrices, SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 904-930.
  54. F. De Terán, F. M. Dopico, and D. S. Mackey, Spectral equivalence of matrix polynomials and the index sum theorem, Linear Algebra and its Applications, 459 (2014), pp. 264-333.
  55. F. De Terán, F. M. Dopico, and J. Pérez, New bounds for roots of polynomials based on Fiedler companion matrices, Linear Algebra and its Applications, 451 (2014), pp. 197-230.
  56. F. M. Dopico, Alan Turing and the origins of modern Gaussian elimination, Arbor, Vol.189-764 (2013), a084. dx.doi.org/10.3989/arbor.2013.764n6007.
  57. N. Castro-González, J. Ceballos, F. M. Dopico, and J. M. Molera, Accurate solution of structured least squares problems via rank-revealing decompositions, SIAM Journal on Matrix Analysis and Applications, 34 (2013), pp. 1112-1128.  (see related unpublished technical report in Unpublished Technical Reports section below)
  58. F. De Terán, F. M. Dopico, and J. Pérez, Condition numbers for inversion of Fiedler companion matrices, Linear Algebra and its Applications, 439, 944-981, (2013).
  59. F. De Terán, F. M. Dopico, and D. S. Mackey, Fiedler companion linearizations for rectangular matrix polynomials, Linear Algebra and its Applications, 437, 957-991 (2012).
  60. C. Ferreira, B. Parlett, and F. M. Dopico, Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix, Numerische Mathematik, 122 (2012), pp. 527-555.
  61. F. De Terán, F. M. Dopico, N. Guillery, D. Montealegre, and N. Reyes, The solution of the equation $AX+X^*B = 0$, Linear Algebra and its Applications, 438 (2013), pp. 2817-2860.
  62. F. M. Dopico, V. Olshevsky, and P. Zhlobich, Stability of QR-based fast system solvers for a subclass of quasiseparable rank one matrices, Mathematics of Computation, 82 (2013), pp. 2007-2034.
  63. F. De Terán and F. M. Dopico, Consistency and efficient solution of the Sylvester equation for *-congruence, Electronic Journal of Linear Algebra, 22 (2011), pp. 849-863.
  64. F. De Terán and F. M. Dopico, The equation $XA+AX^* =0$ and the dimension of *-congruence orbits, Electronic Journal of Linear Algebra, 22 (2011), pp. 448-465.
  65. M. I. Bueno, F. De Terán and F. M. Dopico, Recovery of eigenvectors and minimal bases of matrix polynomials from generalized Fiedler linearizations, SIAM Journal on Matrix Analysis and Applications, 32 (2011), pp. 463-483.
  66. F. M. Dopico and J. M. Molera, Accurate solution of structured linear systems via rank-revealing decompositions, IMA Journal of Numerical Analysis, 32 (2012), pp.1096-1116  (doi:10.1093/imanum/drr023).
  67. F. M. Dopico and P. Koev, Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices, Numerische Mathematik, 119 (2011), pp. 337-371  (DOI: 10.1007/s00211-011-0382-3).
  68. F. De Terán, F. M. Dopico and D. S. Mackey, Palindromic companion forms for matrix polynomials of odd degree, Journal of Computational and Applied Mathematics, 236 (2011), pp. 1464-1480. Also available as MIMS EPRINT 2010.33
  69. F. De Terán and F. M. Dopico, The solution of the equation $XA+AX^T=0$ and its application to the theory of orbits, Linear Algebra and its Applications, 434 (2011), pp. 44-67.
  70. F. De Terán, F. M. Dopico and D. S. Mackey, Fiedler companion linearizations and the recovery of minimal indices, SIAM Journal on Matrix Analysis and Applications, 31 (2010), pp. 2181-2204. Also available as MIMS EPRINT 2009.77.
  71. F. De Terán and F.M. Dopico, First order spectral perturbation theory of square singular matrix polynomials, Linear Algebra and its Applications, 432 (2010), pp. 892-910.
  72. F.M. Dopico, P. Koev and J. M. Molera, Implicit standard Jacobi gives high relative accuracy, Numerische Mathematik, 113 (2009), pp. 519-553.
  73. F. De Terán, F.M. Dopico and D. S. Mackey, Linearizations of singular matrix polynomials and the recovery of minimal indices, Electronic Journal of Linear Algebra 18 (2009), pp. 371-402.
  74. F.M. Dopico and C.R. Johnson, Parametrization of the matrix symplectic group and applications, SIAM Journal on Matrix Analysis and Applications, 31 (2009), pp. 650-673.
  75. F. De Terán and F.M. Dopico, Low rank perturbation of regular matrix polynomials, Linear Algebra and its Applications, 430 (2009), pp.579-586.
  76. F. De Terán and F.M. Dopico, Sharp lower bounds for the dimension of linearizations of matrix polynomials, Electronic Journal of Linear Algebra, 17 (2008), pp. 518-531.
  77. F.M. Dopico y P. Koev, Bidiagonal decompositions of oscillating systems of vectors, Linear Algebra and its Applications, 428 (2008), pp. 2536-2548.
  78. F. De Terán and F.M. Dopico, A note on generic Kronecker orbits of matrix pencils with fixed rank, SIAM Journal on Matrix Analysis and Applications, 30 (2008), pp. 491-496.
  79. F. De Terán, F.M. Dopico and J. Moro, First order spectral perturbation theory of square singular matrix pencils, Linear Algebra and its Applications, 429 (2008), pp. 548-576.
  80. E.S. Coakley, F.M. Dopico and C.R. Johnson, Matrices with orthogonal groups admitting only determinant one, Linear Algebra and its Applications, 428 (2008), pp. 796-813.
  81. F. De Terán, F.M. Dopico and J. Moro, Low rank perturbation of Weierstrass structure, SIAM Journal on Matrix Analysis and Applications, 30 (2008), pp. 538-547.
  82. P. Koev and F.M. Dopico, Accurate eigenvalues of certain sign regular matrices, Linear Algebra and its Applications, 424 (2007), pp. 435-447.
  83. F. De Terán and F.M. Dopico, Low rank perturbation of Kronecker structures without full rank, SIAM Journal on Matrix Analysis and Applications, 29 (2007), pp. 496-529.
  84. M. I. Bueno and F.M. Dopico, A more accurate algorithm for computing the Christoffel transformation, Journal of Computational and Applied Mathematics, 205 (2007), pp. 567-582.
  85. F.M. Dopico, C. R. Johnson and J. M. Molera, Multiple LU factorizations of a singular matrix, Linear Algebra and its Applications, 419 (2006), pp. 24-36.
  86. F.M. Dopico and P. Koev, Accurate symmetric rank revealing and eigendecompositions of symmetric structured matrices, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 1126-1156.
  87. F.M. Dopico and C. R. Johnson, Complementary bases in symplectic matrices and a proof that their determinant is one, Linear Algebra and its Applications, 419 (2006), pp. 772-778.
  88. F.M. Dopico and J. M. Molera, Perturbation theory for factorizations of LU type through series expansions, SIAM Journal on Matrix Analysis and Applications, 27 (2005), pp. 561-581.
  89. M.I. Bueno and F.M. Dopico, Stability and sensitivity of tridiagonal LU factorization without pivoting, BIT, 44 (2004), pp. 651-673.
  90. M.I. Bueno and F.M. Dopico, Stability and sensitivity of Darboux Transformation without parameter, Electronic Transactions on Numerical Analysis, 18 (2004), pp. 101-136.
  91. F.M. Dopico and J. Moro, A note on multiplicative backward errors of accurate SVD algorithms, SIAM Journal on Matrix Analysis and Applications, 25 (2004), pp. 1021-1031.
  92. J. Moro and F.M. Dopico, Low rank perturbation of Jordan structure, SIAM Journal on Matrix Analysis and Applications, 25 (2003), pp. 495-506.
  93. F.M. Dopico, J.M. Molera and J. Moro, An orthogonal high relative accuracy algorithm for the symmetric eigenproblem, SIAM Journal on Matrix Analysis and Applications, 25 (2003), pp. 301-351.
  94. F.M. Dopico and J. Moro, Perturbation theory for simultaneous bases of singular subspaces, BIT, 42 (2002), pp.84-109.
  95. F.M. Dopico, J. Moro and J.M. Molera, Weyl-type relative perturbation bounds for eigensystems of Hermitian matrices, Linear Algebra and its Applications, 309 (2000), pp. 3-18.
  96. F.M. Dopico, A note on sin\Theta theorems for singular subspace variations, BIT,40 (2000), pp. 395-403.
  97. S. H. Kwok, T.B. Norris, L.L. Bonilla, J. Galán, J.A. Cuesta, F. C. Martínez-Dopico, J.M. Molera, H.T. Grahn, K. Ploog, and R. Merlin, Domain wall kinetics and tunneling-induced instabilities in superlattices, Physical Review B, 51 (1995), pp. 10171-10174.
  98. F. C. Martínez-Dopico, J.A. Cuesta, J.M. Molera and R. Brito, Random versus deterministic two-dimensional traffic flow models, Physical Review E, 51 (1995), pp. R835-R838.
  99. J.M. Molera, F. C. Martínez-Dopico, J.A. Cuesta and R. Brito, Theoretical approach to two-dimensional traffic flow models, Physical Review E, 51 (1995), pp. 175-187.
  100. L.L. Bonilla, J. Galán, J.A. Cuesta, F. C. Martínez-Dopico and J.M. Molera, Dynamics of electric field domains and oscillations of the photocurrent in a simple superlattice model, Physical Review B, 50 (1994), pp. 8644-8657.
  101. J.A. Cuesta, F. C. Martínez-Dopico, J.M. Molera and A. Sánchez, Phase transitions in two-dimensional traffic flow models, Physical Review E, 48 (1993), pp. R4175-R4178.
  102. M. Soler, F. C. Martínez-Dopico and J.M. Donoso, Integral Kinetic Method for one dimension: The Spherical Case, Journal of Statistical Physics, 69 (1992), pp. 813-835.
  103. F. C. Martínez-Dopico and M. Soler, An integral numerical method for a nonlinear Fokker-Planck equation, European Journal of Mechanics B/Fluids, 11 (1992), pp. 555-572.

Other Scientific Publications (chapters of books, proceedings, papers in nonindexed journals...)

  1. F.M. Dopico and M. Tsatsomeros, 25 years of the Electronic Journal of Linear AlgebraIMAGE (The Bulletin of the International Linear Algebra Society), 68 (2022), pp. 17-20.
  2. F.M. Dopico and J.M. Sanz-Serna, Normas, matrices reales, vectores complejos, La Gaceta de la Real Sociedad Matemática Española, 22 (3) (2019), p. 514.
  3. F.M. Dopico, M.C. Quintana and P. Van Dooren, Linear system matrices of rational transfer functions, "Realization and Model Reduction of Dynamical Systems, A Festschrift in honor of the 70th birthday of Thanos Antoulas", pp. 95-113, Springer (2022). (arXiv: 1903.05016)
  4. F. M. Dopico, Feature Interview to Daniel Szyld, IMAGE (The Bulletin of the International Linear Algebra Society), 61 (2018), pp. 6-8.
  5. F.M. Dopico, Book Review on Numerical Methods in Matrix Computations by Ảke Björck, SIAM Review, 58 (2016), pp. 363-365.
  6. F. De Terán, F.M. Dopico and D.S. Mackey, Linearizations of matrix polynomials: sharp lower bounds for the dimension and structures, Actas electrónicas del XXI C.E.D.Y.A/XI Congreso de Matemática Aplicada. Ciudad Real, 21-25 septiembre 2009.
  7. F.M. Dopico, Matemática Computacional: Un nuevo pilar para el desarrollo científico y tecnológico. Chapter in the book Matemáticas en la frontera: Nuevas infraestructuras matemáticas en la Comunidad de Madrid, Computación e Interacción I+D+i. Coordinadores: M. de León, J.L. González Llavona,A. Ibort y E. Zuazua. Pages 102 - 115. Comunidad de Madrid, Consejería de Educación (2007).
  8. J. Moro and F.M. Dopico, First Order Eigenvalue Perturbation Theory and the Newton Diagram. Chapter in the book Applied Mathematics and Scientific Computing, edited by Z. Drmac, V. Hari, L. Sopta, Z. Tutek and K. Veselic. Invited contribution for the Proceedings of the Second Conference
    on Applied Mathematics and Scientific Computing, held June 4-9, 2001 in Dubrovnik, Croatia. Pages 143-175. Kluwer Academic Publishers (2003).
  9. O.M. Bulashenko, L.L. Bonilla, J. Galán, J.A. Cuesta, F. C. Martínez-Dopico and J.M. Molera, Dynamics of Resonant Tunneling Domains in Superlattices: a Discrete Drift Model. Chapter in the book Quantum Transport in Ultrasmall Devices, D.K. Ferry, ed. Pages 501-504. Plenum Press (1995).
  10. L.L. Bonilla, J.A. Cuesta, J. Galán, F. C. Martínez-Dopico and J.M. Molera, Electric Field Domains in Superlattices: Dynamics. Chapter in the book 25 Years of Non-Equilibrium Statistical Mechanics. Proceedings of the XIII Sitges Conference. Sitges, Barcelona (Spain), 13-17 June 1994. J.J. Brey, J. Marro, J.M. Rubí, M. San Miguel ed. Pages 327-337. Springer-Verlag, Lectures Notes in Physics, Vol. 445 (1995).
  11. R. Merlin, S.H. Kwok, T.B. Norris, H.T. Grahn, K. Ploog, L.L. Bonilla, J. Galán, J.A. Cuesta, F. C. Martínez-Dopico and J.M. Molera, Dynamics of resonant tunneling domains in superlattices: theory and experiments. Chapter in the book Proceedings of the 22th International Conference on the Physics of
    Semiconductors, Vancouver, Canada, August 15-19, 1994, J. Lockwood, ed. Pages 1039-1042. World Scientific (1995).
  12. F. C. Martínez-Dopico and L.L. Bonilla, Estabilidad de soluciones incoherentes en un sistema hamiltoniano de osciladores acoplados. Actas del XIII C.E.D.Y.A./III Congreso de Matemática Aplicada. Madrid,13-15 de septiembre 1993. A. Casal, L. Gavete, C. Conde, J. Herranz ed. Pages 539-544. Universidad Politécnica de Madrid (1993).
  13. A. Loarte, F. C. Martínez-Dopico and M. Soler, Determination of \Xi_e from X-Ray observations of sawtooth heat pulse propagation in JET ohmic discharges, JET report (89) 28 (1989),  pp. 1-12.
  14. A. Loarte, F. C. Martínez-Dopico and M. Soler, TRANSP simulation of ohmic sawteeth in JET, JET report (89) 12 (1989), pp. 1-42.


Unpublished Technical Reports

  1. N. Castro-González, J. Ceballos, F.M. Dopico, and J. M. Molera, Multiplicative perturbation theory and accurate solution of least squares problems. Technical Report, 2012.